
FUFINA, VASILIEVA880
BIOCHEMISTRY (Moscow) Vol. 90 No. 7 2025
Ethics approval and consent to participate.
This work does not contain any studies involving hu-
man and animal subjects.
Conflict of interest. The authors of this work de-
clare that they have no conflicts of interest.
REFERENCES
1. Cogdell, R.J., Gall,A., and Köhler,J. (2006) The archi-
tecture and function of the light-harvesting apparatus
of purple bacteria: from single molecules to in vivo
membranes, Q. Rev. Biophys., 39, 227-324, https://
doi.org/10.1017/S0033583506004434.
2. Yeates, T. O., Komiya, H., Chirino, A., Rees, D. C.,
Allen, J. P., and Feher, G. (1988) Structure of the re-
action center from Rhodobacter sphaeroides R-26
and 2.4.1: protein-cofactor (bacteriochlorophyll, bac-
teriopheophytin, and carotenoid) interactions, Proc.
Natl. Acad. Sci.USA, 85, 7993-7997, https://doi.org/
10.1073/pnas.85.21.7993.
3. Leonova, M. M., Fufina, T. Yu., Shuvalov, V. A., and
Vasilieva, L. G. (2014) The study of pigment–pro-
tein interactions in the photosynthetic reaction
center of purple bacteria, in Modern Problems of
Photosynthesis [in Russian], Allakhverdiyev, S. I.,
Rubin, A. B., and Shuvalov, V. A., Eds., Izhevsk Insti-
tute of Computer Science, Moscow–Izhevsk, vol. 1,
pp. 157-196.
4. Jones, M. R. (2009) Structural plasticity of reaction cen-
ters from purple bacteria, in The Purple Phototrophic
Bacteria (Hunter, C. N., Daldal, F., Thurnauer, M. C.,
and Beatty, J. T., eds.) vol. 28, Springer, Dordrecht,
The Netherlands, pp. 295-321, https://doi.org/10.1007/
978-1-4020-8815-5_16.
5. Carter, B., Boxer, S. G., Holten, D., and Kirmaier, C.
(2012) Photochemistry of a bacterial photosynthetic
reaction center missing the initial bacteriochlorophyll
electron acceptor, J.Phys. Chem.B, 116, 9971-9982,
https://doi.org/10.1021/jp305276m.
6. Fufina, T. Yu., Leonova, M. M., Khatypov, R. A.,
Khristin, A. M., Shuvalov, V. A., and Vasilieva, L. G.
(2019) Peculiarities of axial liganding of bacteriochlo-
rophylls in the photosynthetic reaction center of
purple bacteria, Biochemistry (Moscow), 84, 509-519,
https://doi.org/10.1134/S0006297919040047.
7. Singh, V.K., Ravi, S.K., Ho, J.W., Wong, J.K.C., Jones,
M. R., and Tan, S. C. (2018) Biohybrid photoprotein
semiconductor cells with deep lying redox shuttles
achieve a 0.7 V photovoltage, Adv. Funct. Mater., 28,
1703689, https://doi.org/10.1002/adfm.201703689.
8. Fufina, T. Yu., and Vasilieva, L. G. (2021) Effects of
detergents and osmolytes on thermostability of native
and mutant reaction centers of Rhodobactersphaeroi-
des, Biochemistry (Moscow), 86, 607-614, https://
doi.org/10.1134/S000629792104012X.
9. Holden-Dye, K., Crouch, L. I., Williams, C. M., Bone,
R. A., Cheng, J., Böhles, F., Heathcote, P., and Jones,
M.R. (2011) Opposing structural changes in two sym-
metrical polypeptides bring about opposing changes
to the thermal stability of a complex integral mem-
brane protein, Arch. Biochem. Biophys., 505, 160-170,
https://doi.org/10.1016/j.abb.2010.09.029.
10. Fufina, T. Y., Selikhanov, G. K., Gabdulkhakov, A. G.,
and Vasilieva, L. G. (2023) Properties and crystal
structure of the Cereibacter sphaeroides photosyn-
thetic reaction center with double amino acid sub-
stitution I(L177)H + F(M197)H, Membranes, 13, 157,
https://doi.org/10.3390/membranes13020157.
11. Fufina, T. Yu., and Vasilieva, L. G. (2023) Role of hy-
drogen-bond networks on the donor side of photo-
synthetic reaction centers from purple bacteria, Bio-
phys. Rev., 15, 921-937, https://doi.org/10.1007/s12551-
023-01109-x.
12. Selikhanov,G., Atamas,A., Yukhimchuk,D., Fufina,T.,
Vasilieva, L., and Gabdulkhakov, A. (2023) Stabi-
lization of Cereibacter sphaeroides photosynthet-
ic reaction center by the introduction of disulfide
bonds, Membranes, 25, 154, https://doi.org/10.3390/
membranes13020154.
13. Fufina, T. Yu., Tretchikova, O. A., Khristin, A. M.,
Khatypov, R. A., and Vasilieva, L. G. (2022) Proper-
ties of mutant photosynthetic reaction centers of the
purple bacterium Cereibacter sphaeroides with sub-
stitution M206 Ile→ Gln, Biochemistry (Moscow), 87,
1447-1458, https://doi.org/10.1134/S000629792210008X.
14. Khatypov, R. A., Vasilieva, L. G., Fufina, T. Yu.,
Bolgarina, T. I., and Shuvalov, A. A. (2005) Effect of
histidine substitution for isoleucine L177 on pigment
composition and properties of reaction centers of
the purple bacterium Rhodobacter sphaeroides, Bio-
chemistry (Moscow), 70, 1527-1533, https://doi.org/
10.1007/s10541-005-0256-3.
15. Jones, M. R., Visschers, R. W., van Grondelle, R., and
Hunter, C. N. (1992) Construction and characteriza-
tion of a mutant strain of Rhodobacter sphaeroides
with the reaction center as the sole pigment-pro-
tein complex, Biochemistry, 31, 4458-4465, https://
doi.org/10.1021/bi00133a011.
16. Cohen-Basire, G., Sistrom, W. R., and Stanier, R. Y.
(1957) Kinetic studies of pigment synthesis by non-sul-
fur purple bacteria, J. Cell Comp. Physiol., 49, 25-68,
https://doi.org/10.1002/jcp.1030490104.
17. Goldsmith, J. O., and Boxer, S. G. (1996) Rapid iso-
lation of bacterial photosynthetic reaction centers
with an engineered poly-histidine tag, Biochim. Bio-
phys. Acta, 1276, 171-175, https://doi.org/10.1016/
0005-2728(96)00091-6.
18. Fufina, T. Y., Vasilieva, L. G., Khatypov, R. A.,
Shkuropatov, A.Y., and Shuvalov, V. A. (2007) Substi-
tution of isoleucine L177 by histidine in Rhodobacter
sphaeroides reaction center results in the covalent