
PROTECTIVE EFFECT OF CAH3 871
BIOCHEMISTRY (Moscow) Vol. 90 No. 7 2025
27. Ohnishi, N., Allakhverdiev, S. I., Takahashi, S.,
Higashi, S., Watanabe, M., Nishiyama, Y., and
Murata,N. (2005) Two-step mechanism of photodam-
age to photosystem II: step 1 occurs at the oxy-
gen-evolving complex and step2 occurs at the photo-
chemical reaction center, Biochemistry, 44, 8494-8499,
https://doi.org/10.1021/bi047518q.
28. Frankel, L. K., Sallans, L., Bellamy, H., Goettert, J. S.,
Limbach, P. A., and Bricker, T. M. (2013) Radiolytic
mapping of solvent-contact surfaces in photosystemII
of higher plants, J.Biol. Chem., 288, 23565-23572,
https://doi.org/10.1074/jbc.M113.487033.
29. Semin, B.K., Davletshina, L.N., Timofeev, K.N., Ivanov,
I. I., Rubin, A. B., and Seibert, M. (2013) Production
of reactive oxygen species in decoupled, Ca
2+
-de-
pleted PSII and their use in assigning a function to
chloride on both sides of PSII, Photosynth. Res., 117,
385-399, https://doi.org/10.1007/s11120-013-9870-x.
30. Pospíšil, P. (2012) Molecular mechanisms of produc-
tion and scavenging of reactive oxygen species by pho-
tosystem II, Biochim. Biophys. Acta Bioenerg., 1817,
218-231, https://doi.org/10.1016/j.bbabio.2011.05.017.
31. Ohira, S., Morita, N., Suh, H.-J., Jung, J., and
Yamamoto, Y. (2005) Quality control of Photosystem
II under light stress – turnover of aggregates of the
D1protein invivo, Photosynth. Res., 84, 29-33, https://
doi.org/10.1007/s11120-004-7310-7.
32. Havaux,M., Greppin,H., and Strasser,R. (1991) Func-
tioning of photosystemsI andII in pea leaves exposed
to heat stress in the presence or absence of light,
Planta, 186, 88-98, https://doi.org/10.1007/BF00201502.
33. Čajánek, M., Štroch, M., Lachetová, I., Kalina, J., and
Spunda, V. (1998) Characterization of the photosys-
tem II inactivation of heat-stressed barley leaves as
monitored by the various parameters of chlorophyll a
fluorescence and delayed fluorescence, J.Photochem.
Photobiol. B Biol., 47, 39-45, https://doi.org/10.1016/
S1011-1344(98)00197-3.
34. Pospíšil, P., Michael, H., Dittmer, J., Solé, V. A., and
Dau, H. (2003) Stepwise transition of the tetra-man-
ganese complex of photosystem II to a binuclear
Mn2(micro-O)2 complex in response to a tempera-
ture jump: a time-resolved structural investiga-
tion employing X-ray absorption spectroscopy, Bio-
phys. J., 84, 1370-1386, https://doi.org/10.1016/S0006-
3495(03)74952-2.
35. Yoshioka, M., Uchida, S., Mori, H., Komayama, K.,
Ohira,S., Morita,N., Nakanishi,T., and Yamamoto,Y.
(2006) Quality control of photosystem II, J. Biol.
Chem., 281, 21660-21669, https://doi.org/10.1074/
jbc.M602896200.
36. Komayama, K., Khatoon, M., Takenaka, D., Horie, J.,
Yamashita,A., Yoshioka,M., Nakayama,Y., Yoshida,M.,
Ohira, S., Morita, N., Velitchkova, M., Enami, I., and
Yamamoto, Y. (2007) Quality control of photosys-
tem II: cleavage and aggregation of heat-damaged
D1 protein in spinach thylakoids, Biochim. Biophys.
Acta Bioenerg., 1767, 838-846, https://doi.org/10.1016/
j.bbabio.2007.05.001.
37. Janka, E., Körner, O., Rosenqvist, E., and Ottosen,
C.-O. (2013) High temperature stress monitoring and
detection using chlorophyll a fluorescence and infra-
red thermography in chrysanthemum (Dendranthe-
ma grandiflora), Plant Physiol. Biochem., 67, 87-94,
https://doi.org/10.1016/j.plaphy.2013.02.025.
38. Yamane, Y., Kashino, Y., Koike, H., and Satoh, K.
(1998) Effects of high temperatures on the photo-
synthetic systems in spinach: oxygen-evolving ac-
tivities, fluorescence characteristics and the dena-
turation process, Photosynth. Res., 57, 51-59, https://
doi.org/10.1023/A:1006019102619.
39. Pospíšil,P., and Tyystjärvi,E. (1999) Molecular mech-
anism of high-temperature-induced inhibition of ac-
ceptor side of photosystem II, Photosynth. Res., 62,
55-66, https://doi.org/10.1023/A:1006369009170.
40. Enami,I., Kitamura,M., Tomo,T., Isokawa,Y., Ohta,H.,
and Katoh,S. (1994) Is the primary cause of thermal
inactivation of oxygen evolution in spinach PS II
membranes release of the extrinsic 33 kDa protein
or ofMn? Biochim. Biophys. Acta Bioenerg., 1186, 52-
58, https://doi.org/10.1016/0005-2728(94)90134-1.
41. Barra,M., Haumann, M., and Dau, H. (2005) Specific
loss of the extrinsic 18 KDa protein from photosys-
tem II upon heating to 47°C causes inactivation of
oxygen evolution likely due to Ca release from the
Mn-complex, Photosynth. Res., 84, 231-237, https://
doi.org/10.1007/s11120-004-7158-x.
42. Shutova, T., Kenneweg, H., Buchta, J., Nikitina, J.,
Terentyev, V., Chernyshov, S., Andersson, B.,
Allakhverdiev, S. I., Klimov, V. V., Dau, H., Junge, W.,
and Samuelsson,G. (2008) Thephotosystem II-associ-
ated Cah3 in Chlamydomonas enhances the O
2
evo-
lution rate by proton removal, EMBO J., 27, 782-791,
https://doi.org/10.1038/emboj.2008.12.
43. Terentyev, V. V., and Shukshina, A. K. (2024) CAH3
from Chlamydomonas reinhardtii: unique carbon-
ic anhydrase of the thylakoid lumen, Cells, 13, 109,
https://doi.org/10.3390/cells13020109.
44. Shukshina, A.K., and Terentyev, V.V. (2021) Involve-
ment of carbonic anhydrase CAH3 in the structural
and functional stabilization of the water-oxidizing
complex of photosystemII from Chlamydomonas re-
inhardtii, Biochemistry (Moscow), 86, 867-877, https://
doi.org/10.1134/S0006297921070075.
45. Park, Y. I., Karlsson, J., Rojdestvenski, I., Pronina, N.,
Klimov, V., Öquist, G., and Samuelsson, G. (1999)
Role of a novel photosystem II-associated carbonic
anhydrase in photosynthetic carbon assimilation in
Chlamydomonas reinhardtii, FEBS Lett., 444, 102-105,
https://doi.org/10.1016/S0014-5793(99)00037-X.
46. Villarejo, A., Shutova, T., Moskvin, O., Forssén, M.,
Klimov, V. V., and Samuelsson, G. (2002) A photosys-