
VILYANEN, KOZULEVA856
BIOCHEMISTRY (Moscow) Vol. 90 No. 7 2025
48. Naydov, I., Kozuleva, M., Ivanov, B., Borisova-
Mubarakshina,M., and Vilyanen,D. (2024) Pathways
of oxygen-dependent oxidation of the plastoqui-
none pool in the dark after illumination, Plants, 13,
3479, https://doi.org/10.3390/plants13243479.
49. Zhou, Q., Yamamoto, H., and Shikanai, T. (2022) Dis-
tinct contribution of two cyclic electron transport
pathways to P700 oxidation, Plant Physiol., 192,
326-341, https://doi.org/10.1093/plphys/kiac557.
50. Kono, M., and Terashima, I. (2016) Elucidation of
photoprotective mechanisms of PSI against fluctu-
ating light photoinhibition, Plant Cell Physiol., 57,
1405-1414, https://doi.org/10.1093/pcp/pcw103.
51. Kramer, M., Rodriguez-Heredia, M., Saccon, F.,
Mosebach, L., Twachtmann, M., Krieger-Liszkay, A.,
Duffy, C., Knell, R. J., Finazzi, J., and Hanke, G. T.
(2021) Regulation of photosynthetic electron flow on
dark to light transition by ferredoxin:NADP(H) ox-
idoreductase interactions, eLife, 10, e56088, https://
doi.org/10.7554/eLife.56088.
52. Rodriguez-Heredia, M., Saccon, F., Wilson, S.,
Finazzi,G., Ruban, A.V., and Hanke, G.T. (2022) Pro-
tection of Photosystem I during sudden light stress
depends on ferredoxin:NADP(H) reductase abun-
dance and interactions, Plant Physiol., 188, 1028-1042,
https://doi.org/10.1093/plphys/kiab550.
53. Tikhonov, A. N. (2024) The cytochrome b
6
f complex:
plastoquinol oxidation and regulation of electron
transport in chloroplasts, Photosynth. Res., 159, 203-
227, https://doi.org/10.1007/s11120-023-01034-w.
54. Kurisu, G., Zhang, H., Smith, J. L., and Cramer, W. A.
(2003) Structure of the cytochrome b
6
f complex of ox-
ygenic photosynthesis: tuning the cavity, Science, 302,
1009-1014, https://doi.org/10.1126/science.1090165.
55. Malone, L.A., Qian,P., Mayneord, G.E., Hitchcock,A.,
Farmer, D. A., Thompson, R. F., Swainsbury, D. J. K.,
Ranson, N.A., Hunter, C.N., and Johnson, M.P. (2019)
Cryo-EM structure of the spinach cytochrome b
6
f com-
plex at 3.6Å resolution, Nature, 575, 535-539, https://
doi.org/10.1038/s41586-019-1746-6.
56. Pintscher, S., Pietras, R., Mielecki, B., Szwalec, M.,
Wójcik-Augustyn,A., Indyka,P., Rawski,M., Koziej,L.,
Jaciuk,M., Ważny,G., Glatt,S., and Osyczka,A. (2024)
Molecular basis of plastoquinone reduction in plant
cytochrome b
6
f, Nat. Plants, 10, 1814-1825, https://
doi.org/10.1038/s41477-024-01804-x.
57. Martinez, S. E., Huang, D., Ponomarev, M., Cramer,
W. A., and Smith, J. L. (1996) The heme redox cen-
ter of chloroplast cytochrome f is linked to a buried
five-water chain, Protein Sci., 5, 1081-1092, https://
doi.org/10.1002/pro.5560050610.
58. Ponamarev, M. V., and Cramer, W. A. (1998) Pertur-
bation of the internal water chain in cytochrome f of
oxygenic photosynthesis: loss of the concerted reduc-
tion of cytochromes f and b
6
, Biochemistry, 37, 17199-
17208, https://doi.org/10.1021/bi981814j.
59. Sainz, G., Carrell, C. J., Ponamarev, M. V., Soriano,
G. M., Cramer, W. A., and Smith, J. L. (2000) Inter-
ruption of the internal water chain of cytochrome
f impairs photosynthetic function, Biochemistry, 39,
9164-9173, https://doi.org/10.1021/bi0004596.
60. Hasan, S. S., Yamashita, E., Baniulis, D., and Cramer,
W.A. (2013) Quinone-dependent proton transfer path-
ways in the photosynthetic cytochrome b
6
f complex,
Proc. Natl. Acad. Sci. USA, 110, 4297-4302, https://
doi.org/10.1073/pnas.1222248110.
61. Crofts, A.R., Hong,S., Wilson,C., Burton,R., Victoria,D.,
Harrison,C., and Schulten,K. (2013) The mechanism
of ubihydroquinone oxidation at the Qo-site of the
cytochrome bc1 complex, Biochim. Biophys. Acta
Bioenerg., 1827, 1362-1377, https://doi.org/10.1016/
j.bbabio.2013.01.009.
62. Tikhonov, A. N. (2014) The cytochrome b
6
f complex
at the crossroad of photosynthetic electron trans-
port pathways, Plant Physiol. Biochem., 81, 163-183,
https://doi.org/10.1016/j.plaphy.2013.12.011.
63. Zito,F., Finazzi,G., Joliot,P., and Wollman, F.A. (1998)
Glu78, from the conserved PEWY sequence of subunit
IV, has a key function in cytochrome b
6
f turnover, Bio-
chemistry, 37, 10395-10403, https://doi.org/10.1021/
bi980238o.
64. Szwalec, M., Bujnowicz, Ł., Sarewicz, M., and
Osyczka, A. (2022) Unexpected heme redox potential
values implicate an uphill step in cytochrome b
6
f,
J. Phys. Chem. B, 126, 9771-9780, https://doi.org/
10.1021/acs.jpcb.2c05729.
65. Hope, A.B. (1993) The chloroplast cytochrome bf com-
plex A critical focus on function, Biochim. Biophys.
Acta Bioenerg., 1143, 1-22, https://doi.org/10.1016/
0005-2728(93)90210-7.
66. Ustynyuk, L.Y., and Tikhonov, A.N. (2022) Plastoqui-
nol oxidation: rate-limiting stage in the electron trans-
port chain of chloroplasts, Biochemistry (Moscow), 87,
1084-1097, https://doi.org/10.1134/S0006297922100029.
67. Sarewicz, M., Szwalec, M., Pintscher, S., Indyka, P.,
Rawski, M., Pietras, R., Mielecki, B., Koziej, Ł.,
Jaciuk,M., Glatt,S., and Osyczka,A. (2023) High-reso-
lution cryo-EM structures of plant cytochrome b
6
f at
work, Sci. Adv., 9, eadd9688, https://doi.org/10.1126/
sciadv.add9688.
68. Finazzi, G. (2002) Redox-coupled proton pumping
activity in cytochrome b
6
f, as evidenced by the pH
dependence of electron transfer in whole cells of
Chlamydomonas reinhardtii, Biochemistry, 41, 7475-
7482, https://doi.org/10.1021/bi025714w.
69. Soriano, G. M., Guo, L.-W., de Vitry, C., Kallas, T.,
and Cramer, W. A. (2002) Electron transfer from
the Rieske iron-sulfur Protein (ISP) to cytochrome
f in vitro, J.Biol. Chem., 277, 41865-41871, https://
doi.org/10.1074/jbc.M205772200.
70. Arantes, G. M. (2025) Redox-activated proton trans-
fer through a redundant network in the Qo site