
SPIRIN et al.520
BIOCHEMISTRY (Moscow) Vol. 90 No. 4 2025
REFERENCES
1. Williams, R.J. (2003) Restriction endonucleases: clas-
sification, properties, and applications, Mol. Biotech-
nol., 23, 225-244, https://doi.org/10.1385/mb:23:3:225.
2. Roberts, R. J. (2003) A nomenclature for restriction
enzymes, DNA methyltransferases, homing endonu-
cleases and their genes, Nucleic Acids Res., 31, 1805-
1812, https://doi.org/10.1093/nar/gkg274.
3. Madhusoodanan, U.K., and Rao, D.N. (2010) Diversity
of DNA methyltransferases that recognize asymmetric
target sequences, Crit. Rev. Biochem. Mol. Biol., 45,
125-145, https://doi.org/10.3109/10409231003628007.
4. Vasu,K., and Nagaraja,V. (2013) Diverse functions of
restriction-modification systems in addition to cel-
lular defense, Microbiol. Mol. Biol. Rev., 77, 53-72,
https://doi.org/10.1128/mmbr.00044-12.
5. Mistry, J., Chuguransky, S., Williams, L., Qureshi, M.,
Salazar, G. A., Sonnhammer, E.L.L., Tosatto, S. C. E.,
Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., and
Bateman, A. (2020) Pfam: the protein families da-
tabase in 2021, Nucleic Acids Res., 49, D412-D419,
https://doi.org/10.1093/nar/gkaa913.
6. Roberts, R. J., Vincze, T., Posfai, J., and Macelis, D.
(2014) REBASE – a database for DNA restriction and
modification: enzymes, genes and genomes, Nucle-
ic Acids Res., 43, D298-D299, https://doi.org/10.1093/
nar/gku1046.
7. Edgar, R. C. (2004) MUSCLE: multiple sequence
alignment with high accuracy and high throughput,
Nucleic Acids Res., 32, 1792-1797, https://doi.org/
10.1093/nar/gkh340.
8. Waterhouse, A. M., Procter, J. B., Martin, D. M. A.,
Clamp,M., and Barton, G.J. (2009) Jalview Version2–
a multiple sequence alignment editor and analysis
workbench, Bioinformatics, 25, 1189-1191, https://
doi.org/10.1093/bioinformatics/btp033.
9. Lefort,V., Desper,R., and Gascuel,O. (2015) FastME2.0:
A comprehensive, accurate, and fast distance-based
phylogeny inference program, Mol. Biol. Evol., 32,
2798-2800, https://doi.org/10.1093/molbev/msv150.
10. Kumar,S., Stecher,G., and Tamura,K. (2016) MEGA7:
Molecular Evolutionary Genetics Analysis version7.0
for bigger datasets, Mol. Biol. Evol., 33, 1870-1874,
https://doi.org/10.1093/molbev/msw054.
11. Letunic, I., and Bork, P. (2021) Interactive Tree Of
Life (iTOL) v5: an online tool for phylogenetic tree
display and annotation, Nucleic Acids Res., 49,
W293-W296, https://doi.org/10.1093/nar/gkab301.
12. Li, W., and Godzik, A. (2006) Cd-hit: a fast program
for clustering and comparing large sets of protein or
nucleotide sequences, Bioinformatics, 22, 1658-1659,
https://doi.org/10.1093/bioinformatics/btl158.
13. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L.,
Ovchinnikov, S., and Steinegger, M. (2022) Colab-
Fold: making protein folding accessible to all, Nat.
Methods, 19, 679-682, https://doi.org/10.1038/s41592-
022-01488-1.
14. Jumper,J., Evans,R., Pritzel,A., Green,T., Figurnov,M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
Žídek,A., Potapenko,A., Bridgland,A., Meyer,C., Kohl,
S. A. A., Ballard, A. J., Cowie, A., Romera- Paredes,B.,
Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S.,
Reiman, D., Clancy, E., Zielinski, M., Steinegger, M.,
Pacholska, M., Berghammer, T., Bodenstein, S.,
Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K.,
Kohli, P., and Hassabis, D. (2021) Highly accurate
protein structure prediction with AlphaFold, Nature,
596, 583-589, https://doi.org/10.1038/s41586-021-
03819-2.
15. DeLano, W.L. (2002) Pymol: An open-source molecu-
lar graphics tool, CCP4 Newsl. Protein Crystallogr, 40,
82-92.
16. Crooks, G.E., Hon,G., Chandonia, J.M., and Brenner,
S. E. (2004) WebLogo: A sequence logo generator,
Genome Res., 14, 1188-1190, https://doi.org/10.1101/
gr.849004.
17. Gingeras, T.R., MIlazzo, J.P., and Roberts, R.J. (1978) A
computer assisted method for the determination of re-
striction enzyme recognition sites, Nucleic Acids Res.,
5, 4105-4127, https://doi.org/10.1093/nar/5.11.4105.
18. Higgins, L. S., Besnier, C., and Kong, H. (2001) The
nicking endonuclease N.BstNBI is closely related to
type IIS restriction endonucleases MlyI and PleI,
Nucleic Acids Res., 29, 2492-2501, https://doi.org/
10.1093/nar/29.12.2492.
19. Kachalova, G. S., Rogulin, E. A., Yunusova, A. K.,
Artyukh, R. I., Perevyazova, T. A., Matvienko, N. I.,
Zheleznaya, L. A., and Bartunik, H. D. (2008) Struc-
tural analysis of the heterodimeric type IIS restric-
tion endonuclease R.BspD6I acting as a complex
between a monomeric site-specific nickase and a
catalytic subunit, J. Mol. Biol., 384, 489-502, https://
doi.org/10.1016/j.jmb.2008.09.033.
20. Malone, T., Blumenthal, R. M., and Cheng, X. (1995)
Structure-guided analysis reveals nine sequence mo-
tifs conserved among DNA amino-methyltransferases,
and suggests a catalytic mechanism for these enzymes,
J. Mol. Biol., 253, 618-632, https://doi.org/10.1006/
jmbi.1995.0577.
21. Yang,Z., Horton, J.R., Zhou,L., Zhang, X.J., Dong,A.,
Zhang,X., Schlagman, S.L., Kossykh,V., Hattman, S.,
and Cheng, X. (2003) Structure of the bacteriophage
T4 DNA adenine methyltransferase, Nat. Struct. Biol.,
10, 849-855, https://doi.org/10.1038/nsb973.
22. Horton, J. R., Liebert,K., Hattman,S., Jeltsch, A., and
Cheng, X. (2005) Transition from nonspecific to spe-
cific DNA interactions along the substrate-recognition
pathway of dam methyltransferase, Cell, 121, 349-361,
https://doi.org/10.1016/j.cell.2005.02.021.
23. Horton, J. R., Liebert, K., Bekes, M., Jeltsch, A., and
Cheng, X. (2006) Structure and substrate recognition