
SPIRIN et al.512
BIOCHEMISTRY (Moscow) Vol. 90 No. 4 2025
2. Roberts, R. J. (2003) A nomenclature for restriction
enzymes, DNA methyltransferases, homing endonu-
cleases and their genes, Nucleic Acids Res., 31, 1805-
1812, https://doi.org/10.1093/nar/gkg274.
3. Madhusoodanan, U.K., and Rao, D.N. (2010) Diversity
of DNA methyltransferases that recognize asymmetric
target sequences, Crit. Rev. Biochem. Mol. Biol., 45,
125-145, https://doi.org/10.3109/10409231003628007.
4. Vasu,K., and Nagaraja,V. (2013) Diverse functions of
restriction-modification systems in addition to cel-
lular defense, Microbiol. Mol. Biol. Rev., 77, 53-72,
https://doi.org/10.1128/mmbr.00044-12.
5. Fokina, A.S., Karyagina, A.S., Rusinov, I.S., Moshensky,
D. M., Spirin, S. A., and Alexeevski, A. V. (2023) Evo-
lution of restriction–modification systems consisting
of one restriction endonuclease and two DNA meth-
yltransferases, Biochemistry (Moscow), 88, 253-261,
https://doi.org/10.1134/S0006297923020086.
6. Mistry, J., Chuguransky, S., Williams, L., Qureshi, M.,
Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E.,
Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., and
Bateman, A. (2020) Pfam: the protein families da-
tabase in 2021, Nucleic Acids Res., 49, D412-D419,
https://doi.org/10.1093/nar/gkaa913.
7. Roberts, R. J., Vincze, T., Posfai, J., and Macelis, D.
(2014) REBASE – a database for DNA restriction and
modification: enzymes, genes and genomes, Nucle-
ic Acids Res., 43, D298-D299, https://doi.org/10.1093/
nar/gku1046.
8. Edgar, R.C. (2004) MUSCLE: multiple sequence align-
ment with high accuracy and high throughput, Nu-
cleic Acids Res., 32, 1792-1797, https://doi.org/10.1093/
nar/gkh340.
9. Lefort,V., Desper,R., and Gascuel,O. (2015) FastME 2.0:
A comprehensive, accurate, and fast distance-based
phylogeny inference program, Mol. Biol. Evol., 32,
2798-2800, https://doi.org/10.1093/molbev/msv150.
10. Kumar, S., Stecher, G., and Tamura,K. (2016) MEGA7:
Molecular Evolutionary Genetics Analysis version7.0
for bigger datasets, Mol. Biol. Evol., 33, 1870-1874,
https://doi.org/10.1093/molbev/msw054.
11. Letunic, I., and Bork, P. (2021) Interactive tree of life
(iTOL) v5: an online tool for phylogenetic tree display
and annotation, Nucleic Acids Res., 49, W293-W296,
https://doi.org/10.1093/nar/gkab301.
12. Li, W., and Godzik, A. (2006) Cd-hit: a fast program
for clustering and comparing large sets of pro-
tein or nucleotide sequences, Bioinformatics, 22,
1658-1659, https://doi.org/10.1093/bioinformatics/
btl158.
13. Burge,C., Campbell, A.M., and Karlin,S. (1992) Over-
and under-representation of short oligonucleotides in
DNA sequences, Proc. Natl. Acad. Sci. USA, 89, 1358-
1362, https://doi.org/10.1073/pnas.89.4.1358.
14. Rusinov, I.S., Ershova, A. S., Karyagina, A. S., Spirin,
S.A., and Alexeevski, A.V. (2018) Comparison of meth-
ods of detection of exceptional sequences in prokary-
otic genomes, Biochemistry (Moscow), 83, 129-139,
https://doi.org/10.1134/S0006297918020050.
15. Karlin, S., Burge, C., and Campbell, A. M. (1992)
Statistical analyses of counts and distributions of
restriction sites in DNA sequences, Nucleic Ac-
ids Res., 20, 1363-1370, https://doi.org/10.1093/nar/
20.6.1363.
16. Rusinov, I., Ershova, A., Karyagina, A., Spirin, S., and
Alexeevski, A. (2015) Lifespan of restriction-modifi-
cation systems critically affects avoidance of their
recognition sites in host genomes, BMC Genomics,
16, 1084, https://doi.org/10.1186/s12864-015-2288-4.
17. Brézellec, P., Hoebeke, M., Hiet, M. S., Pasek, S.,
and Ferat, J. L. (2006) DomainSieve: a protein do-
main-based screen that led to the identification of
dam-associated genes with potential link to DNA
maintenance, Bioinformatics, 22, 1935-1941, https://
doi.org/10.1093/bioinformatics/btl336.
18. Murray, N. E. (2002) 2001 Fred Griffith review lec-
ture. Immigration control of DNA in bacteria: self
versus non-self, Microbiology, 148, 3-20, https://
doi.org/10.1099/00221287-148-1-3.
19. Friedrich, T., Fatemi, M., Gowhar, H., Leismann, O.,
and Jeltsch, A. (2000) Specificity of DNA binding
and methylation by the M.FokI DNA methyltransfer-
ase, Biochim. Biophys. Acta, 1480, 145-159, https://
doi.org/10.1016/s0167-4838(00)00065-0.
20. Horton, J. R., Liebert, K., Bekes, M., Jeltsch, A., and
Cheng, X. (2006) Structure and substrate recognition
of the Escherichia coli DNA adenine methyltransfer-
ase, J.Mol. Biol., 358, 559-570, https://doi.org/10.1016/
j.jmb.2006.02.028.
Publisher’s Note. Pleiades Publishing remains
neutral with regard to jurisdictional claims in published
maps and institutional affiliations. AI tools may have
been used in the translation or editing of this article.