
RATIO OF CYTOPLASMIC ACTINS INFLUENCES DIFFERENTIATION 297
BIOCHEMISTRY (Moscow) Vol. 90 No. 2 2025
Fig. 5. Scheme illustrating the features of the fibroblast-to-my-
ofibroblast differentiation induced by γ-CYA downregulation.
area, distinct stress fibers, mature and supermature
FAs, which are typical of the myofibroblast phenotype.
Efficiency of the induced differentiation of fibroblasts
into myofibroblasts was evaluated through the use
of positive differentiation markers, including α-SMA,
type III collagen, and ED-A FN. The IF staining for neg-
ative control markers, such as SMM and desmin, was
used to further elucidate the differentiation pathway
and exclude the induction of similar cell types.
Contributions. Conceptualization, V.D.; method-
ology, V.D.; software, Yu.L.; validation, G.S., V.D. and
P.K.; formal analysis, S.B. and P.K.; investigation, N.K.,
Yu. L. and V.D.; resources, I.E. and P.K.; data curation
P.K.; writing – original draft preparation, Yu. L.; writ-
ing – review and editing, V.D. and G.S.; visualization,
N.K., Yu.L. and V.D.; supervision, P.K.; project adminis-
tration, P.K.; funding acquisition, P.K. All authors have
read and agreed to the published version of the man-
uscript.
Funding. This work was financially supported
by the Russian Science Foundation (grant no. 23-15-
00433), https://rscf.ru/en/project/23-15-00433/.
Ethics approval and consent to participate.
This work does not contain any studies involving hu-
man and animal subjects.
Conflict of interest. The authors of this work
declare that they have no conflicts of interest.
REFERENCES
1. Patrinostro, X., O’Rourke, A. R., Chamberlain, C. M.,
Moriarity, B. S., Perrin, B. J., and Ervasti, J. M. (2017)
Relative importance of βcyto-and γcyto-actin in pri-
mary mouse embryonic fibroblasts, Mol. Biol. Cell, 28,
771-782, https://doi.org/10.1091/mbc.E16-07-0503.
2. Dugina, V., Zwaenepoel, I., Gabbiani, G., Clément, S.,
and Chaponnier, C. (2009) β-and γ-cytoplasmic actins
display distinct distribution and functional diversi-
ty, J. Cell Sci., 122, 2980-2988, https://doi.org/10.1242/
jcs.041970.
3. Simiczyjew, A., Pietraszek Gremplewicz, K., Mazur,
A.J., and Nowak, D. (2017) Are non-muscle actin iso-
forms functionally equivalent, Histol. Histopathol., 32,
1125-1139, https://doi.org/10.14670/HH-11-896.
4. Bunnell, T. M., Burbach, B. J., Shimizu, Y., and Er-
vasti, J. M. (2011) β-Actin specifically controls cell
growth, migration, and the G-actin pool, Mol. Biol.
Cell, 22, 4047-4058, https://doi.org/10.1091/mbc.
E11-06-0582.
5. Hinz, B., Dugina, V., Ballestrem, C., Wehrle-Haller, B.,
and Chaponnier, C. (2003) α-Smooth muscle actin
is crucial for focal adhesion maturation in myo-
fibroblasts, Mol. Biol. Cell, 14, 2508-2519, https://
doi.org/10.1091/mbc.e02-11-0729.
6. Otranto, M., Sarrazy, V., Bonté, F., Hinz, B.,
Gabbiani, G., and Desmouliere, A. (2012) The role of
the myofibroblast in tumor stroma remodeling, Cell
Adhes. Migrat., 6, 203-219, https://doi.org/10.4161/
cam.20377.
7. Tripathi,M., Billet,S., and Bhowmick, N.A. (2012) Un-
derstanding the role of stromal fibroblasts in cancer
progression, Cell Adhes. Migrat., 6, 231-235, https://
doi.org/10.4161/cam.20419.
8. Gabbiani,G. (2003) The myofibroblast in wound heal-
ing and fibrocontractive diseases, J.Pathol., 200, 500-
503, https://doi.org/10.1002/path.1427.
9. Aujla, P. K., and Kassiri, Z. (2021) Diverse origins
and activation of fibroblasts in cardiac fibrosis, Cell.
Signall., 78, 109869, https://doi.org/10.1016/j.cellsig.
2020.109869.
10. Arnoldi, R., Chaponnier, C., Gabbiani, G., and Hinz, B.
(2012) Chapter 88 – Heterogeneity of smooth muscle,
In Muscle (Hill, J. A. and Olson, E. N., eds) Academic
Press, 2, 1183-1195, https://doi.org/10.1016/B978-0-12-
381510-1.00088-0.
11. Younesi, F. S., Son, D. O., Firmino, J., and Hinz, B.
(2021) Myofibroblast markers and microscopy de-
tection methods in cell culture and histology, Meth-
ods Mol. Biol., 2299, 17-47, https://doi.org/10.1007/
978-1-0716-1382-5_3.
12. Dugina, V., Khromova, N., Rybko, V., Blizniukov, O.,
Shagieva,G., Chaponnier,C., Kopnin,B., and Kopnin,P.
(2015) Tumor promotion by γ and suppression by β
non-muscle actin isoforms, Oncotarget, 6, 14556-
14571, https://doi.org/10.18632/oncotarget.3989.
13. Dugina,V., Shagieva,G., Khromova,N., and Kopnin,P.
(2018) Divergent impact of actin isoforms on cell
cycle regulation, Cell Cycle, 17, 2610-2621, https://
doi.org/10.1080/15384101.2018.1553337.
14. Ampe, C., and Van Troys, M. (2017) Mammali-
an actins: isoform-specific functions and diseases,
Handb. Exp. Pharmacol., 235, 1-37, https://doi.org/
10.1007/164_2016_43.