
KAZAKOV et al.186
BIOCHEMISTRY (Moscow) Vol. 90 No. 2 2025
67. Grandinetti,G., Goetz,D., Santas, A.J., Chinthalapudi,K.,
and Trout, A. (2024) Tracking intracellular proteins
of interest with cryo-electron microscopy, Microsc.
Microanal., 30, ozae044.387, https://doi.org/10.1093/
mam/ozae044.387.
68. Jutz,G., van Rijn,P., Santos Miranda,B., and Böker,A.
(2015) Ferritin: a versatile building block for bion-
anotechnology, Chem. Rev., 115, 1653-1701, https://
doi.org/10.1021/cr400011b.
69. Clarke, N.I., and Royle, S.J. (2018) FerriTag is a new
genetically-encoded inducible tag for correlative
light-electron microscopy, Nat. Commun., 9, 2604,
https://doi.org/10.1038/s41467-018-04993-0.
70. Wang, C., Iacovache, I., and Zuber, B. (2024) Genet-
ically encoded FerriTag as a specific label for cryo-
electron tomography, bioRxiv, https://doi.org/
10.1101/2024.09.10.612178.
71. Ni, T. W., Staicu, L. C., Nemeth, R.S., Schwartz, C. L.,
Crawford,D., Seligman, J.D., Hunter, W.J., Pilon-Smits,
E.A., and Ackerson, C.J. (2015) Progress toward clon-
able inorganic nanoparticles, Nanoscale, 7, 17320-
17327, https://doi.org/10.1039/c5nr04097c.
72. Jiang, Z., Jin,X., Li, Y., Liu, S., Liu, X.M., Wang, Y. Y.,
Zhao,P., Cai,X., Liu,Y., Tang,Y., Sun,X., Liu,Y., Hu,Y.,
Li, M., Cai, G., Qi, X., Chen, S., Du, L. L., and He, W.
(2020) Genetically encoded tags for direct synthesis of
EM-visible gold nanoparticles in cells, Nat. Methods,
17, 937-946, https://doi.org/10.1038/s41592-020-0911-z.
73. Silvester, E., Vollmer, B., Pražák, V., Vasishtan, D.,
Machala, E. A., Whittle, C., Black, S., Bath, J.,
Turberfield, A. J., Grünewald, K., and Baker, L. A.
(2021) DNA origami signposts for identifying pro-
teins on cell membranes by electron cryotomogra-
phy, Cell, 184, 1110-1121.e16, https://doi.org/10.1016/
j.cell.2021.01.033.
74. Rothemund, P. W. (2006) Folding DNA to create na-
noscale shapes and patterns, Nature, 440, 297-302,
https://doi.org/10.1038/nature04586.
75. Jiang, Q., Shang, Y., Xie, Y., and Ding, B. (2024) DNA
origami: from molecular folding art to drug deliv-
ery technology, Adv. Mater., 36, e2301035, https://
doi.org/10.1002/adma.202301035.
76. Mallik, L., Dhakal, S., Nichols, J., Mahoney, J., Dosey,
A. M., Jiang, S., Sunahara, R. K., Skiniotis, G., and
Walter, N. G. (2015) Electron microscopic visualiza-
tion of protein assemblies on flattened DNA origami,
ACS Nano, 9, 7133-7141, https://doi.org/10.1021/acsna-
no.5b01841.
77. Aissaoui, N., Mills, A., Lai-Kee-Him, J., Triomphe, N.,
Cece,Q., Doucet,C., Bonhoure,A., Vidal,M., Ke,Y., and
Bellot,G. (2024) Free-standing DNA origami superlat-
tice to facilitate Cryo-EM visualization of membrane
vesicles, J. Am. Chem. Soc., 146, 12925-12932, https://
doi.org/10.1021/jacs.3c07328.
78. Raab,M., Jusuk,I., Molle,J., Buhr,E., Bodermann,B.,
Bergmann, D., Bosse, H., and Tinnefeld, P. (2018) Us-
ing DNA origami nanorulers as traceable distance
measurement standards and nanoscopic benchmark
structures, Sci. Rep., 8, 1780, https://doi.org/10.1038/
s41598-018-19905-x.
79. Bouvier-Müller, A., and Ducongé, F. (2018) Applica-
tion of aptamers for in vivo molecular imaging and
theranostics, Adv. Drug Deliv. Rev., 134, 94-106, https://
doi.org/10.1016/j.addr.2018.08.004.
80. Hong, H., Goel, S., Zhang, Y., and Cai, W. (2011)
Molecular imaging with nucleic acid aptam-
ers, Curr. Med. Chem., 18, 4195-4205, https://
doi.org/10.2174/092986711797189691.
81. López-Colón, D., Jiménez, E., You, M., Gulbakan, B.,
and Tan, W. (2011) Aptamers: turning the spotlight
on cells, Nanomed. Nanobiotechnol., 3, 328-340, https://
doi.org/10.1002/wnan.133.
82. Valdés-Stauber, N., and Scherer, S. (1994) Isolation
and characterization of Linocin M18, a bacteriocin
produced by Brevibacterium linens, Appl. Environ.
Microbiol., 60, 3809-3814, https://doi.org/10.1128/
aem.60.10.3809-3814.1994.
83. Moon, H., Lee, J., Min, J., and Kang, S. (2014) De-
veloping genetically engineered encapsulin protein
cage nanoparticles as a targeted delivery nanoplat-
form, Biomacromolecules, 15, 3794-3801, https://
doi.org/10.1021/bm501066m.
84. Sutter, M., Boehringer, D., Gutmann, S., Günther, S.,
Prangishvili,D., Loessner, M. J., Stetter, K. O., Weber-
Ban,E., and Ban,N. (2008) Structural basis of enzyme
encapsulation into a bacterial nanocompartment, Nat.
Struct. Mol. Biol., 15, 939-947, https://doi.org/10.1038/
nsmb.1473.
85. Contreras, H., Joens, M. S., McMath, L. M., Le, V. P.,
Tullius, M. V., Kimmey, J. M., Bionghi, N., Horwitz,
M. A., Fitzpatrick, J. A., and Goulding, C. W. (2014)
Characterization of a Mycobacterium tuberculosis
nanocompartment and its potential cargo proteins,
J.Biol. Chem., 289, 18279-18289, https://doi.org/10.1074/
jbc.M114.570119.
86. McHugh, C. A., Fontana, J., Nemecek, D., Cheng, N.,
Aksyuk, A. A., Heymann, J. B., Winkler, D. C., Lam,
A. S., Wall, J. S., Steven, A. C., and Hoiczyk, E. (2014)
A virus capsid-like nanocompartment that stores
iron and protects bacteria from oxidative stress,
EMBO J., 33, 1896-1911, https://doi.org/10.15252/embj.
201488566.
87. Giessen, T. W., Orlando, B. J., Verdegaal, A. A.,
Chambers, M.G., Gardener, J., Bell, D.C., Birrane,G.,
Liao, M., and Silver, P. A. (2019) Large protein or-
ganelles form a new iron sequestration system
with high storage capacity, eLife, 8, e46070, https://
doi.org/10.7554/eLife.46070.
88. Sigmund, F., Massner, C., Erdmann, P., Stelzl, A.,
Rolbieski, H., Desai, M., Bricault, S., Wörner, T. P.,
Snijder,J., Geerlof,A., Fuchs,H., Hrabĕ de Angelis,M.,
Heck, A.J.R., Jasanoff,A., Ntziachristos,V., Plitzko,J.,