
IMMUNOLOGICAL MEMORY AND TRANSGENIC TCR 171
BIOCHEMISTRY (Moscow) Vol. 90 No. 2 2025
20. Rimm, I.J., Krenger,W., Beland, J. L., Geller, M.C., di
Savino, E., Yui, K., Katsumata, M., and Ferrara, J. L.
(1996) TCR-beta transgenic mice fail to mediate a
GVHR due to defects of allorecognition and subse-
quent IL-2 generation, Bone Marrow Transplant., 17,
835-842.
21. Petrie, H.T., Livak,F., Schatz, D.G., Strasser,A., Crispe,
I. N., and Shortman, K. (1993) Multiple rearrange-
ments in Tcell receptor alpha chain genes maximize
the production of useful thymocytes, J.Exp. Med., 178,
615-622, https://doi.org/10.1084/jem.178.2.615.
22. Nakatsugawa, M., Yamashita, Y., Ochi, T., Tanaka, S.,
Chamoto, K., Guo, T., Butler, M. O., and Hirano, N.
(2015) Specific roles of each TCR hemichain in gener-
ating functional chain-centric TCR, J. Immunol., 194,
3487-3500, https://doi.org/10.4049/jimmunol.1401717.
23. Zamkova,M., Kalinina,A., Silaeva,Y., Persiyantseva,N.,
Bruter,A., Deikin,A., Khromykh,L., and Kazansky,D.
(2019) Dominant role of the α-chain in rejection of tu-
mor cells bearing a specific alloantigen in TCRα trans-
genic mice and in invitro experiments, Oncotarget, 10,
4808-4821, https://doi.org/10.18632/oncotarget.27093.
24. Kalinina, A.A., Nesterenko, L.N., Bruter, A.V., Balunets,
D.V., Chudakov, D.M., Izraelson,M., Britanova, O.V.,
Khromykh, L. M., and Kazansky, D. B. (2020) Adop-
tive immunotherapy based on chain-centric TCRs in
treatment of infectious diseases, IScience, 23, 101854,
https://doi.org/10.1016/j.isci.2020.101854.
25. Kalinina,A., Bruter,A., Nesterenko,L., Khromykh,L.,
and Kazansky, D. (2021) Generation of TCRα-trans-
duced Tcells for adoptive transfer therapy of salmo-
nellosis in mice, STAR Protocols, 2, 100368, https://
doi.org/10.1016/j.xpro.2021.100368.
26. Kalinina, A.A., Ziganshin, R.K., Silaeva, Y.Y., Sharova,
N. I., Nikonova, M. F., Persiyantseva, N. A., Gorkova,
T.G., Antoshina, E.E., Trukhanova, L.S., Donetskova,
A. D., Komogorova, V. V., Litvina, M. M., Mitin, A. N.,
Zamkova, M. A., Bruter, A. V., Khromykh, L. M., and
Kazansky, D.B. (2023) Physiological and functional ef-
fects of dominant active TCRα expression in transgenic
mice, Int.J. Mol. Sci., 24, 6527, https://doi.org/10.3390/
ijms24076527.
27. Kazansky, D. B., Khromykh, L. M., Kalinina, A. A., Silaeva,
Y. Y., Zamkova, M. A., Bruter, A. V., Persiyantseva, N.
A., Chikileva, I. O., Dzholokhava, L. H., Nesterenko,
L.N., Sobyanin, K. A., and Knyazhanskaya, E. S. (2019)
A method of anti-infectious immunological protection
against Salmonella typhimurium and Listeria monocy-
togenes using T lymphocyte transgenesis, Patent for
invention RU 2706554 12/13/2017, Russia.
28. Kazansky, D. B., Kalinina, A. A., Zamkova, M. A.,
Khromykh, L. M., and Persiyantseva, N. A. (2020)
Chain-centricity of TCR phenomenon – opportu-
nities and problems of application in medicine
[in Russian], Immunologiya, 41, 421-431, https://
doi.org/10.33029/0206-4952-2020-41-5-421-431.
29. Kalinina, A.A., Khromykh, L.M., and Kazansky, D.B.
(2023) T cell receptor chain centricity: the phenome-
non and potential applications in cancer immunother-
apy, Int.J. Mol. Sci., 24, 15211, https://doi.org/10.3390/
ijms242015211.
30. Kalinina, A., Bruter, A., Persiyantseva, N., Silaeva, Y.,
Zamkova,M., Khromykh,L., and Kazansky,D. (2022)
Safety evaluation of the mouse TCRα – transduc-
ed T cell product in preclinical models in vivo and
in vitro, Biomed. Pharmacother., 145, 112480, https://
doi.org/10.1016/j.biopha.2021.112480.
31. Padovan, E., Casorati, G., Dellabona, P., Meyer, S.,
Brockhaus, M., and Lanzavecchia, A. (1993) Expres-
sion of two T cell receptor α chains: dual receptor
T cells, Science, 262, 422-424, https://doi.org/10.1126/
science.8211163.
32. Luo, O. J., Lei, W., Zhu, G., Ren, Z., Xu, Y., Xiao, C.,
Zhang, H., Cai, J., Luo, Z., Gao, L., Su, J., Tang, L.,
Guo, W., Su, H., Zhang, Z.-J., Fang, E. F., Ruan, Y.,
Leng, S. X., Ju, Z., Lou, H., Gao, J., Peng, N., Chen, J.,
Bao,Z., Liu, F., and Chen,G. (2022) Multidimensional
single-cell analysis of human peripheral blood reveals
characteristic features of the immune system land-
scape in aging and frailty, Nature Aging, 2, 348-364,
https://doi.org/10.1038/s43587-022-00198-9.
33. Zhu,L., Peng,Q., Li,J., Wu,Y., Wang,J., Zhou,D., Ma,L.,
and Yao, X. (2023) scRNA-seq revealed the special
TCRβ & α V(D)J allelic inclusion rearrangement and
the high proportion dual (or more) TCR-expressing
cells, Cell Death Dis., 14, 487, https://doi.org/10.1038/
s41419-023-06004-7.
34. Jun, L., Lanwei, Z., Jiayi, W., and Xinsheng, Y. (2024)
A new immunological index for the elderly: high
proportion of multiple TCR T cells based on scRNA-
Seq, Aging Dis., 15, 948-950, https://doi.org/10.14336/
AD.2023.0509-1.
35. Bradley, C.P., Teng,F., Felix, K.M., Sano,T., Naskar,D.,
Block, K.E., Huang,H., Knox, K.S., Littman, D.R., and
Wu, H.-J. J. (2017) Segmented filamentous bacteria
provoke lung autoimmunity by inducing gut-lung axis
Th17 cells expressing Dual TCRs, Cell Host Microbe, 22,
697-704.e4, https://doi.org/10.1016/j.chom.2017.10.007.
36. Yang,L., Jama,B., Wang,H., Labarta-Bajo,L., Zúñiga,
E. I., and Morris, G. P. (2020) TCRα reporter mice re-
veal contribution of dual TCRα expression to T cell
repertoire and function, Proc. Natl. Acad. Sci. USA, 117,
32574-32583, https://doi.org/10.1073/pnas.2013188117.
37. Xu, Y., Yuan, Y., Mou, L., Hui, L., Zhang, X., Yao, X.,
and Li, J. (2024) scRNA+TCR-seq reveals the pivotal
role of dual receptor Tlymphocytes in the pathogen-
esis of Kawasaki disease and during IVIG treatment,
Front. Immunol., 15, 1457687, https://doi.org/10.3389/
fimmu.2024.1457687.
38. Kalinina,A., Persiyantseva,N., Britanova,O., Lupyr,K.,
Shagina, I., Khromykh, L., and Kazansky, D. (2023)
Unique features of the TCR repertoire of reactivated