ISSN 0006-2979, Biochemistry (Moscow), 2024, Vol. 89, No. 8, pp. 1362-1391 © The Author(s) 2024. This article is an open access publication.

REVIEW

Development of Graphene-Based Materials
with the Targeted Action for Cancer Theranostics

Konstantin N. Semenov'232* Olga S. Shemchuk'?, Sergei V. Ageev'?,
Pavel A. Andoskin!, Gleb O. Iurev’, Igor V. Murin?, Pavel K. Kozhukhov?,
Dmitriy N. Maystrenko?, Oleg E. Molchanov?, Dilafruz K. Kholmurodova?,
Jasur A. Rizaev?, and Vladimir V. Sharoyko®?3>*

LPavlov First Saint Petersburg State Medical University, 197022 Saint Petersburg, Russia
2Saint Petersburg State University, 199034 Saint Petersburg, Russia
3Granov Russian Research Centre for Radiology and Surgical Technologies, 197758 Saint Petersburg, Russia
4Samarkand Medical University, 100400 Samarkand, Uzbekistan
ae-mail: knsemenov@gmail.com Ye-mail: sharoyko@gmail.com

Received May 30, 2024
Revised July 11, 2024
Accepted July 13, 2024

Abstract—The review summarises the prospects in the application of graphene and graphene-based nanomate-
rials (GBNs) in nanomedicine, including drug delivery, photothermal and photodynamic therapy, and theranos-
tics in cancer treatment. The application of GBNs in various areas of science and medicine is due to the unique
properties of graphene allowing the development of novel ground-breaking biomedical applications. The review
describes current approaches to the production of new targeting graphene-based biomedical agents for the che-
motherapy, photothermal therapy, and photodynamic therapy of tumors. Analysis of publications and FDA data-
bases showed that despite numerous clinical studies of graphene-based materials conducted worldwide, there is
a lack of information on the clinical trials on the use of graphene-based conjugates for the targeted drug delivery
and diagnostics. The review will be helpful for researchers working in development of carbon nanostructures,
material science, medicinal chemistry, and nanobiomedicine.
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INTRODUCTION

Graphene-based nanomaterials (GBNs), such as
graphene, graphene oxide (GO), reduced graphene ox-
ide (rGO), and graphene quantum dots (GQDs) (Fig. 1),
attract a significant attention due to their structure
and physicochemical properties. Some of the prom-
ising applications of GBNs in the field of biomedicine
include tissue engineering [1], bioimaging [2, 3] tar-

Abbreviations: GBNs, graphene-based nanomaterials;
CYT, cytostatic drug cytarabine; FA, folic acid; GQDs,
graphene quantum dots; HAS, human serum albumin;
Pc, phthalocyanine; PEG, polyethylene glycol; PDT, photo-
dynamic therapy; PTT, photothermal therapy; rGO, reduced
graphene oxide; ROS, reactive oxygen species.

* To whom correspondence should be addressed.

geted drug delivery [4-9], development of biosensors
[10-12] and antiviral [13-16], antibacterial [17-20],
and antifungal agents [21, 22], and delivery of biomol-
ecules, such as enzymes [23], proteins [24-26], genes
[27-29], RNA [30, 31], and DNA [32, 33] (Fig. 2).

GBNs can be modified by covalent [34, 35] and
noncovalent [36, 37] functionalization to enhance their
electrical [38, 39], optical [40, 41], thermal [42, 43],
electronic [44-46], and mechanical [47, 48] proper-
ties. Monolayer graphene was first obtained in 2004
by Andre Geim and Konstantin Novoselov [49]. De-
pending on the method of synthesis, graphene can
be produced as mono- or multilayered flakes [50, 51].
It can be synthesized by chemical vapour deposition
[52-58], electrochemical exfoliation [59-62], mechano-
chemical exfoliation [63], and chemical and thermal
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Fig. 1. Classification of GBNs.

reduction of GO (synthesis of rGO) [64-70]. rGO is a
GO derivative in which almost all oxygen-containing
groups are reduced with hydrazine hydrate or biomol-
ecules [71] (see Fig. S1 in the Online Resource 1 for rGO
synthesis from GO using l-cysteine [71]).

Graphene consists of sp?-hybridised hexagonal
carbon atoms that form two-dimensional nanolayers,
while GO additionally has oxygen-containing groups
on the surface, e.g., carbonyl, lactol, and carboxyl
groups at the edges of GO layers and epoxy and hy-
droxyl groups on the basal plane (Fig. S2 in the Online
Resource 1) [72-74].

GBN s can be functionalized with molecules of var-
ious nature due to the presence of functional groups
on the GO surface and sp*hybridised carbon atoms.
Reactions that can be carried out on the GO surface
(Fig. 3) include amidation, esterification, 1,3-dipolar
cycloaddition, and halogenation. Other types of inter-
actions are hydrogen bonding, m-n stacking, and hy-
drophobic interactions.

GQDs are graphene nanoparticles less than 100 nm
in size. Due to their exceptional properties, such as low
toxicity, stable photoluminescence, chemical stability,
and pronounced quantum confinement effect, GQDs
are considered as new promising materials for biolo-
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Fig. 2. Publications on GBN applications.

BIOCHEMISTRY (Moscow) Vol. 89 No. 8 2024

Graphene oxide

1363

H
COOH OH

Reduced
graphene oxide

Graphene
quantum dots

gy, optoelectronics, energy industry, and environment
[75-78]. GQDs can be prepared using top-down or bot-
tom-up approaches (Fig. 4) [79-81].

GBN CONJUGATES IN BIOMEDICINE

GBNs can be effectively used in the antitumor
therapy, e.g., for the development of platforms for the
delivery of drugs and genetic constructs, photodynam-
ic therapy (PDT), photothermal therapy (PTT), and ther-
anostics (Fig. 5).

To efficacy of GBN-based antitumor nanodrugs
can be increased by using specific vectors for their de-
livery that are developed to recognise tumor-specific
receptors, such as HER2, CAIX, and receptors for Tat,
LHRH, folate, biotin, and asialoglycoprotein (Fig. 6).

BIOCOMPATIBILITY
AND MECHANISMS OF ENDOCYTOSIS

Analysis of publications shows that function-
alization of graphene surface decreases hemolysis
and, therefore, increases material hemocompatibility.
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Thus, noncovalent functionalization of GO with chi-
tosan produced a material with no hemolytic activity.
Pinto et al. [82] showed that the noncovalent function-
alization of graphene surface with polymers [polyvinyl
alcohol, polyethylene glycol (PEG), polyvinylpyrroli-

Fig. 4. Approaches for GQD synthesis: top-down degradation from various carbon sources and bottom-up synthesis from small

done (PVP), hydroxyethylcellulose, chondroitin, glucos-
amine, and hyaluronic acid (HA)] decreased hemolysis
to 1.7% for all the resulting materials at concentra-
tions below 500 pg-ml-'. Previously, we have studied

the effect of GO enriched (about 85%) with oxygen-
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Fig. 5. Application of GBNs in cancer treatment.

containing functional groups (edge-oxidized graphene
oxide, EOGO) on the extent of spontaneous hemolysis
and found that within the studied concentration range
(Cso = 2.5-25 mg-liter1), this nanomaterial did not af-
fect the level of hemolysis after 1 and 3 h of incuba-
tion [83], while, as demonstrated in [84, 85], GO with a
lower content of oxygen-containing functional groups
(C/O ratio, 2:1) caused the rupture of erythrocyte
membranes with subsequent release of hemoglobin.
Our research group also showed that GO functional-
ized with L-methionine (GFM) [85], L-cysteine (GFC)
[86], glycine (GO-Gly) [87], or folic acid (GO-FA) [88]
caused no damage to the erythrocyte membrane at the
concentrations up to 25 pg-ml".

In comparison with GO, GO functionalized with
amino groups caused no activation of platelet aggrega-
tion up to C =2 yg-ml-. The authors showed that GO-in-
duced aggregation was stronger than the thrombin-in-
duced aggregation [89]. Podolska et al. [90] found that
GO, rGO, and rGO-PEG (C =50 pg mL™1) did not stimu-
late platelet aggregation in the presence of 2 umol-ml!
adenosine diphosphate (ADP). GFC (up to 25 pg-liter")
caused no ADP-induced stimulation of platelet aggre-
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gation, while GFM and EOGO demonstrated the anti-
platelet activity at the concentrations up to 25 and
100 pg-liter!, respectively, in experiments on ADP- and
collagen-induced aggregation.

Ding et al. [91] showed that GO (dispersion con-
centration, C =100 ug-ml') interacted with human
serum albumin (HSA) through various types of inter-
actions (covalent and hydrogen bonding, electrostatic
forces, hydrophobic interactions, and m-mn stacking)
that resulted in the HSA dysfunction and its inability to
remove toxins due to conformational changes, which
indicated a potential toxicity of GO. Functionalization
of the GO surface with carboxyl groups (GO-COOH)
increased its biocompatibility, as GO-COOH caused no
functional changes in HSA. In contrast, Taneva et al.
[92] found that interaction of GO (8 mg-ml-!) with HSA
did not inactivate HSA in the blood plasma because
of the low affinity of GO for HSA. We demonstrated
that interaction of modified GO (GFM and GFC) with
HSA occurred mainly due to the formation of hydro-
gen bonds: the dissociation constants for the GFM and
GFC complexes with HSA were 185.2 [85] and 1600 [86]
ug-ml-, respectively.



1366

Folate
receptor

Asialoglycoprotein
receptor

HER2
receptor

Biotin

*****

*****

Anti-HER2
antibody

Graphene  Polymer

oxide

Folate

SEMENOV et al.

Cancer cell

CAIX
receptor

LHRH
receptor
Tat

protein

:

B 0

Anti-cancer
drug

Biotin

Fig. 6. Tumor-specific receptors and ligands used in GBN modification.

Liu et al. [93] found that GO at the concentrations
up to 100 pg ml! induced mutagenesis due to its effect
on DNA replication and gene expression. Wang et al.
[94] reported that GO (up to 100 pg-ml) displayed a
significant genotoxicity toward human lung fibroblasts
because of the DNA damage resulting from the gen-
eration of reactive oxygen species (ROS) and surface
charge of GO. The authors showed that functionaliza-
tion of the GO surface with PEG and lactobionic acid
(LA) significantly reduced the genotoxicity.

Akhavan et al. [95] showed that the genotoxicity
depends on the lateral dimensions of graphene: rGO
nanoparticles with an average lateral dimension of
11 + 4nm were able to penetrate into the nuclei of
human mesenchymal stem cells, leading to DNA frag-
mentation and chromosomal aberrations even at low
rGO concentrations (0.1 and 1.0 mg-ml") after 1 h of
incubation. At the same time, rGO sheets with an av-
erage lateral size of 3.8 + 0.4 um did not exhibit geno-
toxicity at a concentration of 100 mg-ml-! after 24-h
incubation. Our research group showed that GFM and
GFC did not display genotoxicity at the concentra-
tions up to 25 pg-ml-, while EOGO did not exhibit the
genotoxic effect up to C =100 pg-ml-1. We also studied
the mechanism of endocytosis of GO conjugates with
1,3,5-triazine-based cytostatic drugs and showed that
the transport of these conjugates could occur via two

mechanisms — pinocytosis and clathrin-dependent en-
docytosis [96].

The possibility of selective delivery of the cytostat-
ic drug cytarabine (CYT) was shown in [88]. Using a
conjugate of GO with CYT and folic acid (FA) as a vec-
tor molecule, our research group demonstrated that
the GO-FA-CYT nanoparticles localized in the vicinity of
folate receptor-expressing pancreatic carcinoma cells
(PANC-1) (Fig. 7).

DRUG DELIVERY,
PHOTOTHERMAL THERAPY (PTT),
AND PHOTODYNAMIC THERAPY (PDT)

Below, we will discuss the use of GBNs in tumor
chemotherapy. GBNs can be conjugated with anti-
cancer drugs by noncovalent functionalization of the
graphene surface (see Table 1).

GBNs exhibit a high photothermal conversion ef-
ficiency, i.e., they efficiently convert absorbed light
into heat. In particular, they can absorb light in the
near-infrared (NIR) region, which is a transparency
region for biological tissues (750-1700 nm), thus allow-
ing deep tissue heating [118]. Such localized heating
can selectively damage or destroy cancer cells in PTT,
representing a minimally invasive medical treatment.

BIOCHEMISTRY (Moscow) Vol. 89 No. 8 2024
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Fig. 7. Fluorescence microscopic images of folate receptor-expressing PANC-1 cells incubated with GO-FA-CYT (a) and GO (b).

The size of GBNs promotes their permeability, reten-
tion, and selective clustering at the tumor loci [119].
Table 2 summarises information on the use of GBNs in
chemotherapy and PTT.

GO is a highly efficient nanomaterial for PDT,
since its irradiation in the NIR region results in the for-
mation of ROS in situ, leading to tumor ablation. The
presence of functional groups (epoxy, carbonyl, car-
boxyl, and hydroxyl) on the GO surface allows to load
it with drugs, including photosensitisers, which greatly
enhances the efficacy of PDT. GQDs have a significant
singlet oxygen quantum yield. Because of their prop-
erties, such as suitability for bioimaging, drug loading
capacity, and high therapeutic efficacy in PDT, they
can be used as a multifunctional nanoplatform in ther-
anostics. These properties also create the possibility of
using GBNs in the treatment of cancer. Table 3 sum-
marises the data on the use of GBNs in PDT.

DESIGN OF GBN-BASED
THERANOSTIC APPROACHES

Hatamie et al. [161] synthesized GO/cobalt nano-
composites for inducing magnetic fluid hyperthermia
(MFH) and as contrast agents in magnetic resonance
imaging (MRI) [162]. The composites were obtained
by chemical synthesis (using GO as a source material)
and assembly of 15-nm cobalt nanoparticles; the con-
centration of cobalt in the nanocomposites was 80%.
The studies of hyperthermia induction showed a su-
perior conversion of electromagnetic energy into
heat at a frequency of 350 kHz for the nanocompos-
ite dispersions with the concentrations of 0.01 and
0.005 g/liter. MRI showed that negatively charged GO/
cobalt nanocomposites were suitable for T1-weighted
imaging.

BIOCHEMISTRY (Moscow) Vol. 89 No. 8 2024

Su et al. [163] engineered a noncovalent based
mitomicine C-graphene-BODIPY (4,4-difluoro-4-bora-
3a,4a-diaza-s-indacene)-mPEG (MGBP) nanoconjugate
that ensured extensive ROS production and high pho-
tothermal conversion efficiency (48%) and demonstrat-
ed an excellent therapeutic efficacy in vitro (decreased
HeLa cell viability to 17%). Apart from the synergis-
tic photo/chemo therapy, MGBP can be used in flu-
orescence and photothermal dual-mode imaging, as
BODIPY emits fluorescence when exposed to laser irra-
diation (see Fig. S3 in the Online Resource 1 for the use
of MGBP in theranostics).

Taratula et al. [164] reported a novel cancer-tar-
geting nanoplatform for imaging and treatment of
unresected ovarian cancer tumors by intraoperative
multimodal phototherapy. To develop this theranostic
system, low-oxygen-containing graphene nanosheets
were chemically modified with polypropylenimine
dendrimers loaded with phthalocyanine (Pc) as a pho-
tosensitiser. Such molecular design prevented the
quenching of Pc fluorescence by graphene nanosheets,
providing the possibility of fluorescence imaging. Fur-
thermore, the developed nanoplatform was conjugated
with PEG to improve its biocompatibility and with lu-
teinising hormone-releasing hormone (LHRH) peptide
for the tumor-targeted delivery (Fig. S4 in the Online
Resource 1). Notably, a low-power NIR irradiation at a
single wavelength was used for both heat generation by
the graphene nanosheets (PTT) and ROS production by
Pc (PDT). Such combinatorial phototherapy resulted in
an enhanced destruction of ovarian cancer cells, with
a killing efficacy of 90-95% at low doses of Pc and low-
oxygen-containing graphene, presumably, due to the
synergistic cytotoxic effect of generated ROS and mild
hyperthermia. In vivo studies confirmed that Pc loaded
into this nanoplatform can be employed as a NIR flu-
orescence agent for the imaging-guided drug delivery.
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Hence, the developed Pc-graphene nanoplatform has
a significant potential as an efficient NIR theranostic
probe for imaging and combinatorial phototherapy.

Lamb et al. [165] multifunctionalized graphene
nanoflakes (GNFs) with (i) peptide-based Glu-NH-C(0)-
NH-Lys ligand capable of binding prostate-specific
membrane antigen (PSMA), (ii) potent antimitotic drug
(R)-Ispinesib, (iii) chelator desferrioxamine B (DFO),
and (iv) albumin-binding tag used to extend the half-
life of the developed agent in vivo. 5Ga-labelled con-
jugates were used in invitro and in vivo experiments
to evaluate the performance of GNFs as a theranostic
agent (Fig. S5 in the Online Resource 1).

Using the dose-response curves and flow cytometry
analysis, it was shown that GNFs loaded with (R)-Ispine-
sib inhibited the kinesin spindle protein (KSP) and in-
duced cell cycle arrest at the G2/M checkpoint. Experi-
ments on the cellular uptake and blocking demonstrated
that GNFs functionalized with the Glu-NH-C(O)-NH-Lys
ligand showed a specificity toward PSMA-expressing
cells (LNCaP cell line). The distribution profile and the
excretion rates of %8Ga-labelled GNFs in athymic nude
mice were evaluated using the time-activity curves de-
rived by dynamic positron-emission tomography (PET).
Imaging experiments showed that GNFs demonstrated
low accumulation and retention in background tissues
and had a rapid renal clearance.

Tomasella et al. [166] used GO and reduced thiolat-
ed GO (rGOSH) as 2D substrates to fabricate nanocom-
posites with gold nanospheres (AuNSps) or nanorods
(AuNRs) via in situ reduction of the metal salt precur-
sor and seed-mediated growth processes. The plasmon-
ic sensing capability of the gold-decorated nanosheets
was evaluated by UV-visible spectroscopy. In vitro ex-
periments on the toxicity of the obtained nanocompos-
ites in human neuroblastoma SH-SY5Y cell indicated a
high potential of these hybrids as a plasmonic thera-
nostic platform.

Usman et al. [167] synthesized a bimodal GO-based
theranostic nanodelivery system using CA as an anti-
cancer agent, while Gd and AuNPs were used as con-
trast agents for MRI. CA and Gd were simultaneously
loaded on the GO nanolayers via hydrogen bonding and
n—1 noncovalent interactions to form the GOGCA nano-
composite. Subsequently, AuNPs were doped on the
GOGCA surface by means of electrostatic interactions
(Fig. S6 in the Online Resource 1). The efficacy (cytotox-
icity) of the resulting conjugate was demonstrated in
HepG2 hepatocellular carcinoma cells (ICsp = 25 pg/ml).
At the same time, the conjugate displayed no toxicity
toward normal 3T3 fibroblasts. The T1-weighted im-
ages of the conjugate obtained by MRI demonstrated
contrast enhancement in comparison with the conven-
tional MRI contrast agent GA(NOs)s.

Chawda et al. [168] engineered rGO nanoparticles
decorated with Gd®* ions. The resulting Gd-containing
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rGO nanosheets (Gd-rGONSs) were found to enhance
the loading of 5-FU (loading capacity, 34%) (Fig.S7 in
the Online Resource 1). The drug release was sustained
and reached ~92% within 72 h. Gd-rGONSs provided
a strong contrast in comparison to the optically re-
sponsive bare GO in the swept source optical coher-
ence tomography. The longitudinal relaxivity rate (r1)
for Gd-rGONSs at a magnetic field strength of 1.5T
was 16.85 mM1-s1, which was four times higher
than that of the commercial contrast agent Magnevist
(4 mM1-s™).

Samadian et al. [169] developed a drug delivery
nanosystem based on AuNPs, decorated PEG, and
FA-conjugated GO. Initially, the graphite powder was
oxidised to GO and then functionalized with chloroace-
tic acid to produce carboxylated graphene oxide (GO-
COOH). The obtained GO-COOH was functionalized
with the amine end-caped PEG, FA, and 3-amino-1-pro-
panethiol to produce GO-PEG-FA-SH. AuNPs were syn-
thesized through a citrate-mediated reduction and then
decorated onto/into GO-PEG-FA-SH through the forma-
tion of the Au-S bond to produce the GO-PEG-FA/AuNP
nanosystem (Fig. S8 in the Online Resource 1).

The resulting nanosystem was loaded with
DOX-HCI (76 wt. %), and its drug-loading capacity and
pH-dependent drug release were investigated. The an-
ticancer activity of the developed theranostic agent
against MCF-7 cells was evaluated using the MTT assay
(ICs0 = 20 pg/ml after 24 h). This nanomaterial can also
be used in the chemotherapy/PTT therapy of solid tu-
mors due to the presence of AuNPs.

Yang et al. [170] developed a biocompatible HA-
glutathione (GSH) conjugate (HG) with stabilised gold
nanoclusters (AuNCs) combined with GO and loaded
with 5-FU (25.3 wt. %) as a novel theranostic platform
(HG-AuNC/GO-5-FU) [170]. This multifunctional nano-
material possessed an excellent fluorescence, photo-
sensitivity, and ability to specifically target cancer cell.
Moreover, in the presence of lysosomal hyaluronidase
(HAdase) and laser illumination, the recovery of fluo-
rescence and 0, and complete release of 5-FU could
be achieved, which allows the use HG-AuNC/GO-5-FU
in imaging, tumor chemotherapy, hyperthermia treat-
ment, and PDT. This multifunctional complex holds a
great potential as a versatile theranostic platform for
application in bioimaging-assisted cancer therapy.

Guo et al. [171] double-functionalized GO with FA
and Ce6 for combined targeted PTT/PDT against MCF-7
cells and RAW 264.7 macrophages (Fig. S9 in the Online
Resource 1). GO-FA/Ce6 exhibited good photothermal
properties and high ROS-generating capacity.

This nanomaterial penetrated rapidly into cancer
cells via folate receptor-mediated endocytosis, as well
as into macrophages. A combination of PTT and PDT
allowed to increase the therapeutic efficiency against
MCF-7 cancer cells (cell death, up to 65%) compared
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to individual treatment. GO-FA/Ce6 also efficiently elim-
inated RAW 264.7 macrophages due to the effect of
PTT/PDT (cell death, up to 94%).

Baktash et al. [172] designed and optimized a
hybrid theranostic nanosystem by combining Fe3O4
magnetic nanoparticles (MNPs) for imaging and chi-
tosan-grafted GO as a pH-sensitive smart nanocarrier
(chitosans with different molecular weights and at dif-
ferent concentrations were used) and investigated the
drug (DOX) loading and release properties, biocompat-
ibility, and magnetic characteristics of the developed
Fe304/GO/chitosan nanosystem. It was determined that
grafting of the concentrated high-molecular-weight
chitosan on MNPs/GO provided efficient drug release
and improved DOX loading. Studying the effects of GO
and chitosan on the magnetic behavior of the Fe304/
GO system showed that GO decreased the contrast ef-
ficiency of the MNPs, while grafting of MNP/GO with
hydrophobic chitosan enhanced the contrast, as was
seen from a sharp decrease in the ry relaxivity, which
is very desirable for MRI applications (the ry/ry value
for this composite was 28.95, while the ry/ry values for
Fe304/GO and Fes0, were 6.37 and 14.66, correspond-
ingly). The cytotoxicity assay using L1929 cells (normal
mouse adipose fibroblasts) revealed a high biocompat-
ibility of the MNP/GO/chitosan nanosystem. Further
assays carried out using MNP/GO/chitosan loaded with
DOX demonstrated an improved performance of MNP/
GO grafted with-low-molecular weight chitosan against
MCF-7 cells (cell viability was 39% at 4 ug/ml DOX vs.
53% in the presence of DOX only).

Pan et al. synthesized a covalent conjugate based
on GO and silicon phthalocyanine (SiPc) (Fig. S10 in the
Online Resource 1) [173].

In vitro studies of the GO-SiPc conjugate in cells
showed that this nanomaterial synchronously caused
the photothermal effect, intracellular fluorescence, and
ROS generation. Efficient photoablation of cancer cells
could be triggered by either 671- or 808-nm lasers due
to the synergistic PTT/PDT or NIR photothermal effect,
respectively. When systemically administered to MCF-7
xenograft mice, GO-SiPc efficiently accumulated at the
tumor loci and strongly inhibited tumor growth after
laser irradiation.

Chen et al. [174] reported a novel approach to a
one-step fabrication of magnetic graphene hybrid
nanocomposites GO-PEG—y-Fe;03 (GPFs) using pulsed
laser ablation in liquid method [174]. Due to their good
magnetic and photothermal performance, GPFs were
employed as nanotheranostic agents for the multimod-
al imaging-guided chemo/photothermal synergistic
therapy. The results of multifunctional in vivo imaging
confirmed the GPF uptake by the tumors after intra-
venous injection. Moreover, using the GPF-DOX conju-
gate allowed to achieve a superior synergistic antitu-
mor effect via combined chemotherapy/PTT. Figure S11
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in the Online Resource 1 presents a photograph of he-
patocellular carcinoma (H22)-bearing nude mice under
different treatments (Fig. S12 in the Online Resource 1
demonstrates the difference in the relative tumor vol-
ume after the treatment).

A multifunctional theranostic nanoplatform based
on GO and MnWO,4 was developed by in situ growth of
MnWO, nanoparticles onto GO surfaces in a PEG-con-
taining hyperthermia polyol medium [175]. In compar-
ison with GO and MnWO4/PEG, the NIR absorbance of
the GO/MnWO,/PEG nanocomposite was significantly
improved, resulting in an enhanced photothermal con-
version capability and good photoacoustic (PA) imag-
ing performance. In addition, the longitudinal relaxivity
r1 of GO/MnWO4/PEG reached 11.34 mM-s ! in a 0.5-T
magnetic field, which was significantly higher than
for ordinary Mn(II)-based T1 agents. In vivo MRI and
PA imaging studies demonstrated that GO/MnWO4/PEG
could be used as an efficient bimodal contrast agent
to guide cancer treatment. GO/MnWO4/PEG showed a
high loading capacity for DOX (550 mg/g); the resulting
conjugate demonstrated a pronounced cytotoxic activ-
ity towards 4T1 (human breast carcinoma) and HUVEC
(human umbilical vein endothelial cells) cell lines. For
example, cells incubated with 100 pg/ml GO/MnWO,/
PEG/DOX (containing 5 pg/ml DOX) and then exposed
to laser irradiation showed the highest mortality rate
(about 90%) vs. 50% in the case of DOX (C =5 pg/ml)
or GO/MnWO4/PEG.

Prasad et al. [176] reported the results of in vivo
photo-triggered tumor regression induced by applica-
tion of a biodegradable red emissive nanotheranostic
composite based on liposomes fortified with GO flakes
and functionalized with FA (GO-Lipo-FA) and loaded
with DOX (Fig. S13 in the Online Resource 1) [176].

The synthesized nanocomposite has a good aque-
ous dispersibility, quick photothermal response (54°C in
5 min), high biocompatibility, deep intracellular local-
ization, feasibility for 4T1 visualisation, and long-term
tumor-binding ability of the injected emissive nano-
hybrid. GO enhanced the stability of the drug-loaded
liposomes in the extracellular environment, which
prevented premature release of the loaded anticancer
drug from the liposomal cavity. In addition, the authors
demonstrated the developed nanocomposite caused tu-
mor regression (~300 to 25 mm?) in 4T1 Balb/c mice.

Foroushani et al. [177] developed a theranostic
system based on GO integrated with PDA, BSA, dieth-
ylenetriaminepentaacetic acid (DTPA)-Mn(II) contrast
agent, FA, and 5-FU for targeting CT-26 colon cancer
cells via folate receptors overexpressed on cancer cells.
According to the results of biodistribution assessment,
the conjugate was observed mainly in the tumors
and, therefore, provided highly efficient drug deliv-
ery to CT-26 cells. Invitro and in vivo MRI and thera-
py examination confirmed the ability of the conjugate
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to enhance the contrast in tumor imaging (diagnostics)
and to inhibit the growth of cancer cells (therapy).

Luo et al. [178] proposed an easy method for
the synthesis of a theranostic agent based on super-
paramagnetic iron oxide nanoparticles loaded onto
GO nanosheets (SPIONs@GO) and cis-aconitic anhy-
dride-DOX prodrug (CAD) attached to the carboxylic
groups of GO through the 2-poly(amidoamine) dendrim-
er (G2.NH2) linker (Fig. S14 in the Online Resource 1).

The release of DOX from the conjugate was pH-sen-
sitive: 66.91 + 3.16% at pH 5.5 and 47.51 +1.87% at
pH 6.5 within 12 h. The viability of 4T1 cells after treat-
ment with CAD-SPIONs@GO for 24 h decreased cell vi-
ability from 93.8% to 38.3% at the DOX concentration
of 1.3-20 uM (similar to the treatment with free DOX).
According to the results of biodistribution experiments,
4 h after injection, CAD-SPIONs@GO mainly localized to
the spleen and liver. The total Fe amount in all major
organs decreased greatly 12 h after injection, suggest-
ing that CAD-SPIONs@GO was cleared out of the body.
The authors proposed that the interface effect between
GO and in situ growth of SPIONs contributed to the sig-
nificant increase in the r; value and decrease in the
ro value. In vivo studies results confirmed a possibility
of conjugate application in high-resolution T1-weight-
ed MRI.

Shi etal. [179] synthesized a theranostic agent
based on rGO conjugated to the anti-CD105 antibody
(TRC105) and a complex of %4Cu (PET label; half-life,
12.7 h) with 1,4,7-triazacyclononane-1,4,7-triacetic acid
(NOTA, chelator). In vivo experiments on the blockade of
the agent uptake by 4T1 cells with an excess of TRC105,
as well as flow cytometry and histology data, confirmed
the stability of $Cu-NOTA-rGO-TRC105 and its speci-
ficity for CD105 of the tumor vasculature. Noteworthy,
64Cu-NOTA-RGO-TRC105 exhibited little extravasation
in 4T1 cells, indicating that targeting tumor vasculature
(instead of tumor cell) can be a valid and preferred
approach for the application of nanomaterials. Since
rGO can be used for PTT, the tumor-specific rGO con-
jugate may serve as a promising theranostic agent that
integrates imaging and therapeutic components.

Cheng et al. [180] developed a mild thermal an-
nealing procedure to induce blue fluorescence in GO
suspensions (Fig. S15 in the Online Resource 1) [180].
The procedure preserved the oxygen functional groups,
which enabled conjugation of a cancer drug and re-
sulted in nontoxic and harmless nanomaterial. The
authors demonstrated the capability of GO to simulta-
neously act as a cellular imaging agent and a drug de-
livery agent in CT26 cancer cells without the need for
additional fluorescent protein labelling. The authors
also covalently annealed GO with CP (elemental con-
tent of Pt in the conjugate, ~3 wt. %) and determined
that the annealed GO boosted the therapeutic perfor-
mance of CP in killing CT26 cancer cells.

SEMENOV et al.

Hu et al. [181] synthesized a new conjugate based
on rGO, PDA, and ICG for amplifying the PA imaging
and PTT effects for cancer phototheranostic (Fig.S16
in the Online Resource 1). The procedure for the
ICG-PDA-rGO preparation included the following
steps: (i) dopamine monomers were loaded on the GO
surface and spontaneously self-polymerised via the
Michael addition/Schiff reaction to form a PDA coat-
ing on the rGO surface, (ii) free ICG dye was absorbed
on the PDA-rGO surface via hydrogen bonds and n-m
stacking interactions.

ICG-PDA-rGO exhibited stronger PTT effect and
higher PA contrast than pure GO and PDA-rGO. After
PA imaging-guided PTT treatment, the tumors in 4T1
breast subcutaneous and orthotopic mice models were
suppressed completely; no treatment-induced toxicity
was observed.

Turcheniuk etal.[182] produced a theranostic
agent based on AuNRs coated with pegylated rGO
(AuNRs@rGO-PEG) and modified with sulfo-cyanine?7
fluorescent dye (Cy7) and Tat protein (see Fig.S17 in
the Online Resource 1).

Selective targeting of tumors was ensured by
specific interaction between the Tat protein and hu-
man glioblastoma astrocytoma cells (U87MG). Due to
the presence of NIR fluorescent dye integrated onto
the rGO shell, the conjugate acted as fluorescent cel-
lular marker. In vivo experiments in mice implanted
with U87MG cells showed that irradiation at 800 nm
(0.7 W/cm?, 10 min) suppressed tumor growth after
5 days. Histological analysis of tumor tissues revealed
an active uptake of the nanoparticles by the tumor
stromal cells and selective damage of tumor vessels.

Wang et al. [183] synthesized a novel nanomate-
rial for the PTT/immunotherapy of cancer by the self-
assembly of oleate-capped FesO4 nanoparticles (FNPs)
and rGO through electrostatic interaction, followed by
modification with PEG-NH, [182]. FNP/rGO-PEG nano-
composites can be used for the MRI-guided cancer
PTT/immunotherapy due to their excellent magnetic
properties. Under laser irradiation (805 nm), FNP/rGO-
PEG improved the PTT efficacy by increasing the tem-
perature up to 60°C and killing 80% of 4T1 orthotopic
mouse breast tumor cells. In addition, FNP/rGO-PEG
nanocomposites could be used to stimulate immune
response by triggering the maturation of dendritic cells
(CD11c* CD86") and secretion of cytokines (IL-12p70,
IL-6). Intratumoral injection of FNP/rGO-PEG nano-
composites in combination with NIR laser irradiation
significantly increased the median survival time of
tumor-bearing animals.

Bansal et al. [184] developed a theranostic agent
based on GQDs conjugated with a biosurfactant isolat-
ed from Candida parapsilosis through the amine-car-
boxyl coupling reaction and noncovalent modification
with FA. The obtained conjugate had a homogenous
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dispersion and showed the photoluminescence proper-
ties and demonstrated enhanced uptake by cancerous
cells in comparison with non-modified GQDs. In the
MTT assay, the conjugate decreased the viability of
MCF-7 cells by more than 60% after 24 h of incubation
and by 75% after 48 h [184].

Ko et al. [185] synthesized GQDs for the diagnos-
tics and therapy of breast cancer via conjugation with
two precursors. DOX-disulfide-GQDs provided chemo-
therapy and PEG-disulfide-herceptin enhanced the
half-life and ensured the targeting of HER2 (Fig. S18 in
the Online Resource 1) [184]. The cleavage of disulfide
links at a physiologically relevant glutathione concen-
tration in cancer cells provided controlled drug re-
lease. The authors demonstrated an enhanced cellular
uptake of the conjugate by SK-BR-3 cells (HER2-posi-
tive) in comparison with MDA-MB-231 cells (HER2-neg-
ative). As a result, the viability of SK-BR-3 cells was
significantly decreased (to <50%) at the conjugate con-
centration of 50 mg/ml, whereas the viability of MDA-
MB-231 cells was reduced to >85%.

Iannazzo etal. [9] developed a novel conjugate
based on GQDs covalently modified with the tumor
targeting module biotin (BTN) and noncovalently mod-
ified with DOX (GQD-BTN-DOX, Fig. S19 in the Online
Resource 1), as well as the GQD-DOX conjugate [9]. The
DOX content in GQD-BTN-DOX and GQD-DOX was 16.6
and 17.8 wt. %, respectively. GQD-DOX nanoparticles
were preferentially accumulated in the cytoplasm,
while DOX localized to the nuclei. At the same time,
GQD-BTN-DOX nanoparticles concentrated in the endo-
somal compartment after endocytosis-mediated inter-
nalisation. The cytotoxicity of GQD-BTN-DOX towards
A549 cells strongly depended on the uptake by the cells,
which was more pronounced and delayed for GQD-
BTN-DOX in comparison with GQD-DOX and DOX only.

Li et al. [186] synthesized a covalent GQD-FA con-
jugate and loaded it with IR780 iodide (33.19 wt. %)
via m—m stacking interactions (see Fig. S20 in the On-
line Resource 1). In vivo NIR fluorescence imaging and
biodistribution analysis demonstrated that in BALB/c
nude mice xenografted with HeLa cells, the conjugate
preferentially accumulated in the tumors. When irra-
diated with an 808-nm laser, IR780/GQDs-FA caused
hyperthermia (photothermal conversion efficiency,
87.9%) and induced apoptosis of cancer cells and tu-
mor necrosis, resulting in complete tumor disappear-
ance without relapse.

Ding et al. [187] developed a novel type of GQD-
based theranostic agent with a superior therapeutic
performance against 4T1 cancer cells both in in vitro
[ICso (theranostic agent) = 1.5 g/ml, ICso (DOX) = 4 g/ml]
and in vivo (the conjugate reduced the tumor volume
2.7 times more than DOX alone) due to the improved
tissue penetration and cellular uptake [187]. GQDs
were synthesized via facile chemical oxidation and
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exfoliation technique using polyacrylonitrile carbon
fibres as a raw material. The NIR fluorescent molecule
Cy5.5 was covalently attached to GQDs via the cathep-
sin D-responsive peptide (Phe-Ala-Ala-Phe-Phe-Val-Leu-
Cys, P); functionalized GQDs were then loaded with
DOX via m—m interactions. The synthesized construct al-
lowed to track the delivery and release of the antican-
cer drug, as well as to monitor drug-induced apoptosis
of cancer cells through GQD, DOX, and Cy5.5 charac-
teristic fluorescence.

Badrigilan et al. [188] produced a theranostic agent
based on superparamagnetic iron oxide and bismuth
(I1D) oxide (Bi»03) with GQDs for in vitro computed to-
mography (CT)/MR dual-mode bioimaging and PTT
(Fig. S21 in the Online Resource 1).

The GQD-Fe/Bi nanocomposite had the following
advantages: (i) the photothermal conversion efficacy
was 31.8% with a high photostability upon irradiation
with a NIR 808-nm laser; (ii) photothermal ablation of
HeLa and MCF-7 cells in vitro resulted in a significant
decrease in cell viability (~50% at 100 yg/ml) in com-
parison with laser treatment only (3.0%); (iii) obtained
nanoparticles exhibited a superior X-ray attenuation
capability (175%) in comparison with Dotarem (mac-
rocyclic gadolinium-based contrast agent), as well as
showed a strong T2-relaxation shortening capability
(r;=62.34 mM-s71) as a contrast agent for CT/MRI.

The same authors synthesized GQD-coated bis-
muth nanoparticles and assessed the possibility of
their application for CT imaging and PTT [189].

Lee et al. [190] developed rGQDs derived by rGO
top-down oxidation and HA-GQDs (HGQDs) that were
hydrothermally synthesized by the bottom-up method
[190]. The obtained nanomaterials possessed substan-
tial NIR absorption and fluorescence throughout the
visible and NIR regions, which is beneficial for in vivo
imaging. Aqueous dispersions of rGQDs and HGQDs
added to HeLa cells and irradiated with NIR laser
(A =808 nm, 0.9 W/cm?, 10 min) facilitated an increase in
temperature up to 54.5°C, leading to the decrease in the
HeLa cell viability from 80% for RGQDs (C = 1.5 mg/ml)
and 60% for HGQDs (C = 1.7 mg/ml) without irradiation
down to ~40% (RGQDs) and ~20% (HGQDs) after irra-
diation.

Sung et al. [191] synthesized a unique conjugate
composed of porous carbon/silica nanosponge encap-
sulated with GQDs loaded with docetaxel (DTX) via -7t
interactions; then, the particles were capped with the
red blood cell (RBC) membrane and cetuximab via fu-
sion (see Fig. S22 in the Online Resource 1).

The obtained conjugate has the following advan-
tages: (1) the stability of the RBC lipids and proteins
on porous particles was higher than that of lipids of
liposomal particles due to a high adhesion energy;
(ii) the porous surface of the particles exhibited an
excellent lateral bilayer fluidity, thus improving the
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targeting efficacy; (iii) RBC-coated nanoparticles had
a considerably longer circulation time than PEGylated
nanoparticles due to the presence of transmembrane
protein CD47 that induces signalling through the
phagocyte receptor CD172a, inhibits immune response,
and suppresses particle recognition by the immune
system (see Fig.S23 in the Online Resource 1 for the
mechanism of conjugate action).

Due to the synergistic effect of biomimetic tar-
geting and penetration of DTX/GQD nanoparticles fol-
lowed by irradiation (1.5 W/cm?, 10 min), it was able
to achieve a significant reduction in the size of A549
tumor during the first 10 days of treatment.

Xuan et al. [192] synthesized nanoparticles for bio-
imaging and combined chemotherapy/PTT based on
AuNSp clusters (diameter of 50 nm) coated with GQDs
covalently modified by FA using carbodiimide method
and noncovalently modified with DOX (94.39 + 0.39%)
(see Fig. S24 in the Online Resource 1 for the scheme of
conjugate synthesis).

The obtained nanoparticles formed stable aque-
ous dispersions and demonstrated an excellent PA
and CT imaging performance, low cytotoxicity, and
PTT conversion efficiency up to 51.31%. In addition,
the authors showed a significant decrease in the rel-
ative tumor volume in BALB/c nude mice (SPF males,
4-week-old) inoculated with HeLa cells (Fig. S25 in the
Online Resource 1).

Wu et al. [193] developed a new type of theranos-
tic agent named PC@GCpD(Gd) [192]. First, the authors
synthesized GQDs covalently modified with the Ce6
photosensitiser (GCpD) and coated with PDA layers,
yielding water-compatible and biocompatible nanopar-
ticles with a substantial photothermal/photochemi-
cal effect. Then, the Cy3-labelled nonmethylated CpG
oligodeoxynucleotide (5'-TCC ATG ACG TTC CTG ACG
TT-3'-Cy3) was condensed with the biodegradable cat-
ionic poly(l-lysine) (PLL) polypeptide to obtain immu-
noactive nanoparticles (PCs). GCpD nanocomposites
easily self-assembled on the surface of PC nanoimmu-
nocores and then were chelated with Gd3* (see Fig. $26
in the Online Resource 1).

The obtained photo/immunoactive hybrid PC@
GCpD(Gd) nanostructures decreased the viability of
cancer cells, released endogenous cancer cell antigens,
and contemporaneously regulated tumor microenvi-
ronment to facilitate the immunostimulatory effect.
The authors characterised the cellular uptake, MRI/flu-
orescence imaging, and phototherapeutic and immu-
nostimulatory activity towards the murine mammary
cancer EMT6 model, as well as the biosafety of PC@
GCpD(Gd) nanoparticles. It was shown that laser irra-
diation (660 nm, 1 W/cm?, 10 min) simulated the PTT
and PDT effects, leading to a significant decrease in the
EMTS6 cell viability in mice, secretion of proinflammato-
ry cytokines, maturation of dendritic cells, and recruit-
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ment of CD4" and CD8" T cells into the tumor, resulting
in a higher therapeutic efficacy. MRI/fluorescence imag-
ing traced specific accumulation and retention of PC@
GCpD(Gd) in the tumor-draining lymph nodes.

Ruiyi et al.[194] synthesized histidine (His)-
and octadecylamine (OA)-functionalized GQDs (His/
OA-GQDs). The obtained nanoparticles were used for
the fabrication of His/OA-GQD-NaYF4:Yb,Tm nano-
cages that exhibited a 140.2-fold enhancement of up-
conversion fluorescence, stability in aqueous solu-
tions, and high DOX-loading capacity (461.2% within
30 min) (see Fig. S27 in the Online Resource 1) [194].
The authors also developed a drug delivery system
(GYAuDOX) which included His/OA-GQD-NaYF4:Yb,Tm
gold nanoparticles as a core, and MGC-803 cell mem-
brane as a shell. The obtained material exhibited a
high biocompatibility, selective targeting of homotypic
tumor cells, pH- and light-stimulated DOX release, and
capacity for chemotherapy/PTT. The data on the effica-
cy of the obtained theranostic agent are presented in
Fig. S28 in the Online Resource 1.

Liu et al. [195] synthesized GQDs with a strong ab-
sorption (1070 nm) in the NIR-II region (1000-1700 nm)
by a one-step solvothermal treatment using phenol
(carbon precursor) and hydrogen peroxide (oxidising
agent) in the magnetic field with an intensity of 9T
(see Fig. S29 in the Online Resource 1) [195].

The synthesized nanoparticles possessed a uni-
form size (3.6 nm), tunable fluorescence (quantum
yield, 16.67%), and high photothermal conversion ef-
ficacy (33.45%). The obtained nanomaterial ablated tu-
mor cells, inhibited tumor growth upon NIR-II irradia-
tion, and, at the same time, provided an enhanced NIR
imaging of tumors in mice.

Zhang etal.[196] developed a nanomaterial
(named R-NCNP) by coating a mesoporous carbon ni-
tride (CsN4) layer on a core-shell nitrogen-doped GQD
(N-GQD)@ HMSNs and decorated it with a P-PEG-RGD
polymer consisting of a purified hematoporphyrin
derivative photofrin (P) and the tumor-homing pep-
tide RGD (Arg-Gly-Asp) connected by PEG as a linker,
to achieve the targeted delivery (see Fig. S30 in the On-
line Resource 1).

The obtained material has the following advantag-
es for biomedicine applications: (i) R-NCNPs catalyzed
water decomposition in the tumor microenvironment
with the generation of oxygen, thus decreasing local
hypoxia; (ii) the generated oxygen bubbles enhanced
generation of an echogenic signal, making them la-
ser-activatable ultrasound imaging agents; (iii) acti-
vation of the encapsulated photosensitisers and CsNy-
layered photosensitiser at A = 630 nm stimulated ROS
formation; (iv) combination of PTT with PDT for tumor
eradication; (v) P-PEG-RGD promoted efficient accumu-
lation of particles in the tumor; (vi) R-NCNPs acted as
multimodal real-time monitoring agent.
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Fig. 8. Directions of GBN scientific applications.

Prasad et al. [197] synthesized a theranostic agent
based on GQD-embedded mesoporous silica which dis-
played a high penetration and retention ability in sol-
id tumors (see Fig.S31 in the Online Resource 1). The
obtained material had a uniform particle size distribu-
tion, improved stability, high surface area (850 m?/g),
DOX loading capacity of 31%, and high photothermal
response. It was shown that administration of carbano-
silica in 4T1 female Balb/c mice led to a temperature
rise (to ~55°C after 5 min of exposure to NIR light), flu-
orescence intensity of 108 p/s/cm?/sr, and as a result,
provided 68.75% tumor shrinking compared to 34.48%
without NIR irradiation.

Yang et al. [198] developed a self-assembly ap-
proach to the theranostic agent synthesis based on the
acidity-activated GQD nanotransformers (GQD NTs)
by mixing (i) GQDs (loading module) that provided
large surface area for the loading of photosensitiser
[tetrakis(4-carboxylphenyl) porphyrin, TCPP] and MRI
contrast agent (Mn-TCPP), (ii) RGD peptide as a tar-
geting module due to its affinity to ayBs integrin, and
(iii) linking module that connected the first two mod-
ules through the host—guest interactions between B-CD
and adamantine [198]. As seen from Fig. S32 in the On-
line Resource 1, the acidity of tumor microenvironment
triggered GQD NT transformation and drugs release.

The synthesized theranostic agent provided an ef-
ficient targeting and long-term retention in the tumor
(over 96 h), possibility of MRI/fluorescence imaging,
and photothermal effect, which enhanced cell mem-
brane permeability, as well as an efficient photosen-
sitiser uptake and repeated PDT at a photosensitiser
content 10-30 times lower than in previously published
papers. As seen from Fig. S33 in the Online Resource 1
(survival and tumor growth curves of A549 tumor-
bearing mice after different treatments), the developed
nanomaterial significantly inhibited tumor growth
and increased mouse survival.
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CONCLUSION

Since their discovery in 2004, graphene and its
derivatives have become some of the most promising
materials due to a broad range of potential applica-
tions in various fields of science and technology, such
as biotechnology, biomedicine, tissue engineering,
bioanalysis, etc. (Fig. 8).

Graphene has a unique two-dimensional flat struc-
ture, unique physical and chemical properties, and
high biocompatibility, which promotes its application
in the creation of high-tech materials for biomedical
purposes. The use of graphene and its derivatives for
the treatment of solid tumors is one of the promising
areas of modern oncology. Along with the advantages
of GBNs, there are also some limitations that need to
be considered. One of the main problems is the lack
of information about metabolic pathways and toxi-
cokinetics of graphene materials used in biomedical
applications. This limits the ability to fully evaluate the
safety and efficacy of these materials in living organ-
isms. Another important problem is poor reproducibil-
ity of the synthesis of graphene-based materials and
common lack of comprehensive studies on their struc-
ture and composition. Both these factors lead to a poor
reproducibility of biological effects of graphene-based
materials in living systems. Also, water dispersions of
GBNs are prone to aggregation, which affects their bi-
ological activity and mechanism of biological action.
In this regard, it is necessary to conduct a comprehen-
sive physico-chemical investigation of their stability,
including the studies of optimal stabilizers. Let us hope
that these problems will be solved in the XXI century —
the century of nanotechnology.
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