INTERMEDIATE FILAMENTS MAINTAIN MITOCHONDRIAL MEMBRANE POTENTIAL 2035
BIOCHEMISTRY (Moscow) Vol. 89 No. 11 2024
9. Davies, K. J. A., Packer, L., and Brooks, G. A. (1981)
Biochemical adaptation of mitochondria, muscle,
and whole-animal respiration to endurance train-
ing, Arch. Biochem. Biophys., 209, 539-554, https://
doi.org/10.1016/0003-9861(81)90312-X.
10. Linnane, A.W., Marzuki,S., Ozawa,T., and Tanaka,M.
(1989) Mitochondrial DNA mutations as an import-
ant contributor to ageing and degenerative dis-
eases, Lancet, 333, 642-645, https://doi.org/10.1016/
S0140-6736(89)92145-4.
11. Mitchell, P. D. (1981) Chemiosmotic Proton Circuits
in Biological Membranes (Skulachev, V. P., and Hin-
kle, P. C., eds) Addison-Wesley, Advanced Book Pro-
gram/World Science Division, University of Michigan,
pp.633.
12. Tanaka, A., Cleland, M. M., Xu, S., Narendra, D. P.,
Suen, D.F., Karbowski,M., and Youle, R.J. (2010) Pro-
teasome and p97 mediate mitophagy and degrada-
tion of mitofusins induced by Parkin, J.Cell Biol., 191,
1367-1380, https://doi.org/10.1083/jcb.201007013.
13. Green, D.R., and Reed, J.C. (1998) Mitochondria and
apoptosis, Science, 281, 1309-1312, https://doi.org/
10.1126/science.281.5381.1309.
14. Vasan, K., Clutter, M., Fernandez Dunne, S., George,
M. D., Luan, C. H., Chandel, N. S., and Martínez-
Reyes, I. (2022) Genes involved in maintaining mi-
tochondrial membrane potential upon electron
transport chain disruption, Front. Cell Dev. Biol., 10,
781558, https://doi.org/10.3389/fcell.2022.781558.
15. Begum, H. M., and Shen, K. (2023) Intracellular and
microenvironmental regulation of mitochondrial
membrane potential in cancer cells, WIREs Mech. Dis.,
15, e1595, https://doi.org/10.1002/wsbm.1595.
16. Uttam, J., Hutton, E., Coulombe, P. A., Anton-Lam-
precht, I., Yu, Q. C., Gedde-Dahl, T., Fine, J. D., and
Fuchs, E. (1996) The genetic basis of epidermolysis
bullosa simplex with mottled pigmentation, Proc. Natl.
Acad. Sci. USA, 93, 9079-9084, https://doi.org/10.1073/
pnas.93.17.9079.
17. Kumar,V., Bouameur, J.-E., Bär, J., Rice, R.H., Hornig-
Do, H.-T., Roop, D. R., Schwarz, N., Brodesser, S.,
Thiering, S., Leube, R. E., Wiesner, R. J., Vijayaraj,P.,
Brazel, C. B., Heller, S., Binder, H., Löffler-Wirth, H.,
Seibel, P., and Magin, T. M. (2015) A keratin scaffold
regulates epidermal barrier formation, mitochondrial
lipid composition, and activity, J.Cell Biol., 211, 1057-
1075, https://doi.org/10.1083/jcb.201404147.
18. Kumemura,H., Harada, M., Yanagimoto, C., Koga,H.,
Kawaguchi,T., Hanada,S., Taniguchi,E., Ueno,T., and
Sata, M. (2008) Mutation in keratin 18 induces mito-
chondrial fragmentation in liver-derived epithelial
cells, Biochem. Biophys. Res. Commun., 367, 33-40,
https://doi.org/10.1016/j.bbrc.2007.12.116.
19. Chernoivanenko, I. S., Matveeva, E. A., Gelfand, V.I.,
Goldman, R.D., and Minin, A.A. (2015) Mitochondrial
membrane potential is regulated by vimentin inter-
mediate filaments, FASEB J., 29, 820, https://doi.org/
10.1096/fj.14-259903.
20. Capetanaki, Y. (2002) Desmin cytoskeleton: a poten-
tial regulator of muscle mitochondrial behavior and
function, Trends Cardiovasc. Med., 12, 339-348, https://
doi.org/10.1016/S1050-1738(02)00184-6.
21. Guichard, J. L., Rogowski, M., Agnetti, G., Fu, L.,
Powell, P., Wei, C. C., Collawn, J., and Dell’Italia, L. J.
(2017) Desmin loss and mitochondrial damage pre-
cede left ventricular systolic failure in volume over-
load heart failure, Am. J. Physiol. Heart Circ. Physi-
ol., 313, H32-H45, https://doi.org/10.1152/ajpheart.
00027.2017.
22. Milner, D.J., Weitzer,G., Tran,D., Bradley,A., and Ca-
petanaki, Y. (1996) Disruption of muscle architecture
and myocardial degeneration in mice lacking desmin,
J. Cell Biol., 134, 1255-1270, https://doi.org/10.1083/
jcb.134.5.1255.
23. Milner, D. J., Mavroidis, M., Weisleder, N., and Capet-
anaki,Y. (2000) Desmin cytoskeleton linked to muscle
mitochondrial distribution and respiratory function,
J. Cell Biol., 150, 1283-1298, https://doi.org/10.1083/
jcb.150.6.1283.
24. Vrabie, A., Goldfarb, L. G., Shatunov, A., Nägele, A.,
Fritz, P., Kaczmarek, I., and Goebel, H. H. (2005)
The enlarging spectrum of desminopathies: new
morphological findings, eastward geographic
spread, novel exon 3 desmin mutation, Acta Neuro-
pathol., 109, 411-417, https://doi.org/10.1007/s00401-
005-0980-1.
25. Dayal, A.A., Medvedeva, N.V., and Minin, A.A. (2022)
N-Terminal fragment of vimentin is responsible for
binding of mitochondria in vitro, Biochemistry (Mos-
cow) Suppl. Ser.A Membr. Cell Biol., 16, 151-157, https://
doi.org/10.1134/S1990747822030059.
26. Dayal, A. A., Medvedeva, N. V., Nekrasova, T. M., Du-
halin, S. D., Surin, A.K., and Minin, A.A. (2020) De-
smin interacts directly with mitochondria, Int.J. Mol.
Sci., 21, 8122, https://doi.org/10.3390/ijms21218122.
27. Bornemann, A., and Schmalbruch,H. (1992) Desmin
and vimentin in regenerating muscles, Muscle Nerve,
15, 14-20, https://doi.org/10.1002/mus.880150104.
28. Mohamed, J. S., and Boriek, A. M. (2012) Loss of de-
smin triggers mechanosensitivity and up-regulation
of Ankrd1 expression through Akt-NF-κB signaling
pathway in smooth muscle cells, FASEBJ., 26, 757-765,
https://doi.org/10.1096/fj.10-160291.
29. Mendez, M.G., Kojima, S., and Goldman, R. D. (2010)
Vimentin induces changes in cell shape, motility, and
adhesion during the epithelial to mesenchymal tran-
sition, FASEBJ., 24, 1838-1851, https://doi.org/10.1096/
fj.09-151639.
30. Kojima, S., Vignjevic, D., and Borisy, G. G. (2004)
Improved silencing vector co-expressing GFP and
small hairpin RNA, Biotechniques, 36, 74-79, https://
doi.org/10.2144/04361ST02.