NT-3 MIMETICS ATTENUATE MORPHINE WITHDRAWAL 1969
BIOCHEMISTRY (Moscow) Vol. 89 No. 11 2024
11. Sazonova, N.M., Tarasiuk, A.V., Melnikova, M.V., Zha-
nataev, I.A., Logvinov, I.O., Nikolaev, S.V., Nikiforov,
D.M., Antipova, T. A., Povarnina, P. Yu., Gudasheva,
T. A., and Seredenin, S. B. (2024) Stereospecificity of
the cytoprotective and antidepressant-like activities
of GTS-301, a dimeric dipeptide mimetic of neurotro-
phin-3, Pharmaceut. Chem. J., 57, 1888-1897, https://
doi.org/10.1007/s11094-024-03093-2.
12. Tarasiuk, A.V., Sazonova, N.M., Melnikova, M.V., Po-
mogaybo, S.V., Logvinov, I.O., Nikolaev, S.V., Nikifor-
ov, D.M., Antipova, T.A., Povarnina, P.Y., Vakhitova,
Yu. V., Gudasheva, T. A., and Seredenin, S. B. (2023)
Design and synthesis of a novel dipeptide mimetic of
the 4th loop of neurotrophin-3 and its pharmacolog-
ical effects, Mendeleev Commun., 33, 786-789, https://
doi.org/10.1016/j.mencom.2023.10.016.
13. Kolik, L.G., and Konstantinopolsky, M.A. (2019) Com-
parative assessment of the effectiveness of noncom-
petitive NMDA receptor antagonists amantadine and
hemantane in morphine withdrawal syndrome mod-
el, Bull. Exp. Biol. Med., 166, 739-743, https://doi.org/
10.1007/s10517-019-04430-2.
14. Freshney, R. I. (2010) Culture of Animal Cells: A Man-
ual of Basic Technique and Specialized Applications,
Wiley, https://doi.org/10.1002/9780470649367.
15. Noble, J. E., and Bailey, M. J. A. (2009) Chapter 8
Quantitation of Protein. B, in Methods in Enzymolo-
gy, Elsevier, pp. 73-95, https://doi.org/10.1016/S0076-
6879(09)63008-1.
16. Towbin, H., Staehelin, T., and Gordon,J. (1979) Elec-
trophoretic transfer of proteins from polyacrylamide
gels to nitrocellulose sheets: procedure and some ap-
plications, Proc. Natl. Acad. Sci. USA, 76, 4350-4354,
https://doi.org/10.1073/pnas.76.9.4350.
17. Gudasheva, T. A., Sazonova, N. M., Tarasiuk, A. V.,
Logvinov, I. O., Antipova, T. A., Nikiforov, D.M., Po-
varnina, P.Yu., and Seredenin, S. B. (2022) The first
dipeptide mimetic of neurotrofin-3: design and phar-
macological properties, Dokl. Biochem. Biophys., 505,
160-165, https://doi.org/10.1134/S1607672922040032.
18. Fdez Espejo, E., Cador, M., and Stinus, L. (1995) Etho-
pharmacological analysis of naloxone-precipitated
morphine withdrawal syndrome in rats: a newly-
developed “etho-score”, Psychopharmacology (Berl),
122, 122-130, https://doi.org/10.1007/BF02246086.
19. Berhow, M.T., Russell, D.S., Terwilliger, R.Z., Beitner-
Johnson, D., Self, D. W., Lindsay, R. M., and Nestler,
E.J. (1995) Influence of neurotrophic factors on mor-
phine- and cocaine-induced biochemical changes in
the mesolimbic dopamine system, Neuroscience, 68,
969-979, https://doi.org/10.1016/0306-4522(95)00207-y.
20. Akbarian, S., Bates, B., Liu, R. J., Skirboll, S. L.,
Pejchal, T., Coppola, V., Sun, L. D., Fan, G., Kucera,J.,
Wilson, M. A., Tessarollo, L., Kosofsky, B. E., Taylor,
J.R., Bothwell,M., Nestler, E.J., Aghajanian, G.K., and
Jaenisch, R. (2001) Neurotrophin-3 modulates nor-
adrenergic neuron function and opiate withdrawal,
Mol. Psychiatry, 6, 593-604, https://doi.org/10.1038/
sj.mp.4000897.
21. Kolik, L.G., Konstantinopolsky, M.A., Nadorova, A.V.,
Kruglov, S. V., Antipova, T. A., Gudasheva, T. A., and
Seredenin, S.B. (2020) Peptide mimetic of BDNF loop
4 blocks Behavioral signs of morphine withdrawal
syndrome and prevents the increase in ΔFosB level in
the striatum of rats, Bull. Exp. Biol. Med., 170, 30-34,
https://doi.org/10.1007/s10517-020-04998-0.
22. Kokaia,Z., Metsis,M., Kokaia,M., Elmér,E., and Lind-
vall, O. (1995) Co-expression of TRKB and TRKC re-
ceptors in CNS neurones suggests regulation by mul-
tiple neurotrophins, Neuroreport, 6, 769-772, https://
doi.org/10.1097/00001756-199503270-00016.
23. Ucha, M., Roura-Martínez, D., Ambrosio, E., and
Higuera-Matas, A. (2020) The role of the mTOR
pathway in models of drug-induced reward and
the behavioral constituents of addiction, J. Psy-
chopharmacol. (Oxf), 34, 1176-1199, https://doi.org/
10.1177/0269881120944159.
24. Zhu,H., Zhuang,D., Lou,Z., Lai, M., Fu, D., Hong, Q.,
Liu, H., and Zhou, W. (2021) AKT and its phosphor-
ylation in nucleus accumbens mediate heroin-seek-
ing behavior induced by cues in rats, Addict Biol., 26,
e13013, https://doi.org/10.1111/adb.13013.
25. Khalifa, F. N., Hussein, R. F., Mekawy, D. M., Elwi,
H.M., Alsaeed, S.A., Elnawawy,Y., and Shaheen, S.H.
(2024) Potential role of the lncRNA “HOTAIR”/miRNA
“206”/BDNF network in the alteration in expression
of synaptic plasticity gene arc and BDNF level in
sera of patients with heroin use disorder through the
PI3K/AKT/mTOR pathway compared to the controls,
Mol. Biol. Rep., 51, 293, https://doi.org/10.1007/s11033-
024-09265-3.
26. Zhang,X., Liang,Z., Zhou,Y., Wang,F., Wei,S., Tan,B.,
and Guo, Y. (2023) Artesunate inhibits apoptosis and
promotes survival in Schwann cells via the PI3K/AKT/
mTOR axis in diabetic peripheral neuropathy, Biol.
Pharm. Bull., 46, 764-772, https://doi.org/10.1248/bpb.
b22-00619.
27. Huang,J., Chen,D., Yan,F., Wu,S., Kang,S., Xing, W.,
Zeng, W., and Xie, J. (2020) JTC-801 alleviates me-
chanical allodynia in paclitaxel-induced neuropath-
ic pain through the PI3K/AKT/mTOR pathway, Eur. J.
Pharmacol., 883, 173306, https://doi.org/10.1016/
j.ejphar.2020.173306.
Publisher’s Note. Pleiades Publishing remains
neutral with regard to jurisdictional claims in published
maps and institutional affiliations. AI tools may have
been used in the translation or editing of this article.