PRENATAL HYPOXIA 1959
BIOCHEMISTRY (Moscow) Vol. 89 No. 11 2024
development, Prog. Neurobiol., 73, 397-445, https://
doi.org/10.1016/j.pneurobio.2004.06.003.
29. Pofi, R., and Tomlinson, J.W. (2020) Glucocorticoids
in pregnancy, Obstet. Med., 13, 62-69, https://doi.org/
10.1177/1753495X19847832.
30. Grier, D.G., and Halliday, H. L. (2004) Effects of glu-
cocorticoids on fetal and neonatal lung develop-
ment, Treat. Respir. Med., 3, 295-306, https://doi.org/
10.2165/00151829-200403050-00004.
31. Tsiarli, M. A., Rudine, A., Kendall, N., Pratt, M. O.,
Krall, R., Thiels, E., DeFranco, D. B., and Monaghan,
A. P. (2017) Antenatal dexamethasone exposure dif-
ferentially affects distinct cortical neural progenitor
cells and triggers long-term changes in murine cere-
bral architecture and behavior, Transl. Psychiatry, 7,
e1153, https://doi.org/10.1038/tp.2017.65.
32. Odaka, H., Adachi, N., and Numakawa, T. (2017) Im-
pact of glucocorticoid on neurogenesis, Neural Re-
gen. Res., 12, 1028-1035, https://doi.org/10.4103/1673-
5374.211174.
33. Barrett, R. D., Bennet, L., Davidson, J., Dean, J. M.,
George, S., Emerald, B. S., and Gunn, A. J. (2007) De-
struction and reconstruction: hypoxia and the devel-
oping brain, Birth Defects Res. C Embryo Today, 81,
163-176, https://doi.org/10.1002/bdrc.20095.
34. Wang, B., Zeng,H., Liu, J., and Sun, M. (2021) Effects
of prenatal hypoxia on nervous system development
and related diseases, Front. Neurosci., 25, 755554,
https://doi.org/10.3389/fnins.2021.755554.
35. Weaver, I.C., Cervoni,N., Champagne, F.A., D’Alessio,
A.C., Sharma,S., Seckl, J.R., Dymov, S., Szyf, M., and
Meaney, M. J. (2004) Epigenetic programming by ma-
ternal behavior, Nat. Neurosci., 7, 847-854, https://
doi.org/10.1038/nn1276.
36. Abul, M., Al-Bader, M. D., and Mouihate, A. (2022)
Prenatal activation of glucocorticoid receptors induc-
es memory impairment in a sex-dependent manner:
role of cyclooxygenase-2, Mol. Neurobiol., 59, 3767-
3777, https://doi.org/10.1007/s12035-022-02820-8.
37. Goda, N., and Kanai, M. (2012) Hypoxia-inducible
factors and their roles in energy metabolism, Int. J.
Hematol., 95, 457-463, https://doi.org/10.1007/s12185-
012-1069-y.
38. Watts, M. E., Pocock, R., and Claudianos, C. (2018)
Brain energy and oxygen metabolism: emerging role
in normal function and disease, Front. Mol. Neurosci.,
11, 216, https://doi.org/10.3389/fnmol.2018.00216.
39. Vetrovoy, O.V., Rybnikova, E.A., and Samoilov, M. O.
(2017) Cerebral mechanisms of hypoxic/ischemic
postconditioning, Biochemistry (Moscow), 82, 392-400,
https://doi.org/10.1134/S000629791703018X.
40. Sha,D., Jin,H., Kopke, R.D., and Wu, J.Y. (2004) Cho-
line acetyltransferase: regulation and coupling with
protein kinase and vesicular acetylcholine transport-
er on synaptic vesicles, Neurochem. Res., 29, 199-207,
https://doi.org/10.1023/b:nere.0000010449.05927.f9.
41. Vetrovoy, O. V., Nimiritsky, P. P., Tyulkova, E. I., and
Rybnikova, E. A. (2020) The content and activity of
hypoxia-inducible factor HIF1α increased in the hip-
pocampus of newborn rats that were subjected to
prenatal hypoxia on days 14-16 of embryogenesis,
Neurochem. J., 14, 286-289, https://doi.org/10.1134/
S1819712420030125.
42. Potapova, S. S., Zachepilo, T. G., Stratilov, V. A.,
Tyulkova, E. I., and Vetrovoy, O. V. (2023) Prenatal
hypoxia causes an increase in the content and tran-
scriptional activity of the hypoxia-inducible factor
HIF1α in the hippocampus of adult and aging rats,
Neurochem. J., 17, 751-754, https://doi.org/10.1134/
S1819712423330012.
43. Vetrovoy,O., Stratilov,V., Potapova,S., and Tyulkova,E.
(2023) Oxidative stress accompanies HIF1-depen-
dent impairment of glucose metabolism in the hip-
pocampus of adult rats survived prenatal severe
hypoxia, Dev. Neurosci., 46, 297-307, https://doi.org/
10.1159/000535326.
44. Trollmann, R., and Gassmann, M. (2009) The role of
hypoxia-inducible transcription factors in the hy-
poxic neonatal brain, Brain Dev., 31, 503-509, https://
doi.org/10.1016/j.braindev.2009.03.007.
45. Gonzalez-Rodriguez, P. J., Xiong, F., Li, Y., Zhou, J.,
and Zhang, L. (2014) Fetal hypoxia increases vul-
nerability of hypoxic-ischemic brain injury in neo-
natal rats: role of glucocorticoid receptors, Neuro-
biol. Dis., 65, 172-179, https://doi.org/10.1016/j.nbd.
2014.01.020.
46. Abreu-Villaça, Y., Filgueiras, C. C., and Manhães,
A. C. (2011) Developmental aspects of the choliner-
gic system, Behav. Brain Res., 221, 367-378, https://
doi.org/10.1016/j.bbr.2009.12.049.
47. Van Eden, C.G., Kros, J. M., and Uylings, H. B. (1990)
The development of the rat prefrontal cortex. Its
size and development of connections with thala-
mus, spinal cord and other cortical areas, Prog.
Brain Res., 85, 169-183, https://doi.org/10.1016/s0079-
6123(08)62680-1.
48. Amakhin, D. V., Soboleva, E. B., Postnikova, T. Y.,
Tumanova, N.L., Dubrovskaya, N.M., Kalinina, D.S.,
Vasilev, D.S., and Zaitsev, A.V. (2022) Maternal hypox-
ia increases the excitability of neurons in the entorhi-
nal cortex and dorsal hippocampus of rat offspring,
Front. Neurosci., 16, 867120, https://doi.org/10.3389/
fnins.2022.867120.
49. Hunter, R. G. (2012) Stress and the α7 nicotinic ace-
tylcholine receptor, Curr. Drug Targets, 13, 607-612,
https://doi.org/10.2174/138945012800398982.
50. Cho, Y. H., and Jeantet, Y. (2010) Differential involve-
ment of prefrontal cortex, striatum, and hippocampus
in DRL performance in mice, Neurobiol. Learn. Mem.,
93, 85-91, https://doi.org/10.1016/j.nlm.2009.08.007.
51. Wang, J.X., Kurth-Nelson,Z., Kumaran,D., Tirumala,D.,
Soyer,H., Leibo, J. Z., Hassabis,D., and Botvinick,M.