PERIPHERAL MEDIATORS OF SUBSTANCE USE DISORDERS 1883
BIOCHEMISTRY (Moscow) Vol. 89 No. 11 2024
Mol. Psychiatry, 27, 4642-4652, https://doi.org/10.1038/
s41380-022-01736-y.
47. Lozić, M., Šarenac,O., Murphy,D., and Japundžić-Ži-
gon,N. (2018) Vasopressin, central autonomic control
and blood pressure regulation, Curr. Hypertens. Rep.,
20, 11, https://doi.org/10.1007/s11906-018-0811-0.
48. Zhou,Y., Colombo,G., Carai, M.A., Ho,A., Gessa, G.L.,
and Kreek, M.J. (2011) Involvement of arginine va-
sopressin and V1b receptor in alcohol drinking in
Sardinian alcohol-preferring rats, Alcohol. Clin. Exp.
Res., 35, 1876-1883, https://doi.org/10.1111/j.1530-
0277.2011.01532.x.
49. Edwards, S., Guerrero, M., Ghoneim, O. M., Rob-
erts,E., and Koob, G.F. (2012) Evidence that vasopres-
sin V1breceptors mediate the transition to excessive
drinking in ethanol-dependent rats, Addict. Biol., 17,
76-85, https://doi.org/10.1111/j.1369-1600.2010.00291.x.
50. Bates, M.L.S., Hofford, R.S., Emery, M.A., Wellman,
P. J., and Eitan,S. (2018) Therole of the vasopressin
system and dopamine D1 receptors in the effects of
social housing condition on morphine reward, Drug
Alcohol Depend., 188, 113-118, https://doi.org/10.1016/j.
drugalcdep.2018.03.021.
51. Katz, D. A., Locke, C., Liu, W., Zhang, J., Achari, R.,
Wesnes, K. A., and Tracy, K.A. (2016) Single-dose in-
teraction study of the arginine vasopressin type 1B
receptor antagonist ABT-436 and alcohol in moderate
alcohol drinkers, Alcohol. Clin. Exp. Res., 40, 838-845,
https://doi.org/10.1111/acer.12996.
52. Ryan, M.L., Falk, D.E., Fertig, J.B., Rendenbach-Muel-
ler,B., Katz, D.A., Tracy, K.A., Strain, E.C., Dunn, K.E.,
Kampman,K., Mahoney,E., Ciraulo, D.A., Sickles-Colan-
eri,L., Ait-Daoud,N., Johnson, B.A., Ransom,J., Scott,C.,
Koob, G.F., and Litten, R.Z. (2017) A phase2, double-
blind, placebo-controlled randomized trial assessing
the efficacy of ABT-436, a novel V1breceptor antago-
nist, for alcohol dependence, Neuropsychopharmacolo-
gy, 42, 1012-1023, https://doi.org/10.1038/npp.2016.214.
53. Burnette, E. M., Nieto, S. J., Grodin, E. N., Meredith,
L.R., Hurley,B., Miotto,K., Gillis, A.J., and Ray, L.A.
(2022) Novel agents for the pharmacological treat-
ment of alcohol use disorder, Drugs, 82, 251-274,
https://doi.org/10.1007/s40265-021-01670-3.
54. Carter, C. S., Kenkel, W. M., MacLean, E. L., Wilson,
S.R., Perkeybile, A.M., Yee, J.R., Ferris, C.F., Nazarloo,
H. P., Porges, S. W., Davis, J. M., Connelly, J. J., and
Kingsbury, M. A. (2020) Is oxytocin “nature’s med-
icine”? Pharmacol. Rev., 2, 829-861, https://doi.org/
10.1124/pr.120.019398.
55. Wang, P., Wang, S.C., Liu,X., Jia,S., Wang,X., Li,T.,
Yu, J., Parpura, V., and Wang, Y. F. (2022) Neural
functions of hypothalamic oxytocin and its regu-
lation, ASN Neuro, 14, 17590914221100706, https://
doi.org/10.1177/17590914221100706.
56. Jankowski, M., Broderick, T. L., and Gutkowska, J.
(2020) The role of oxytocin in cardiovascular protec-
tion, Front. Psychol., 11, 2139, https://doi.org/10.3389/
fpsyg.2020.02139.
57. Cid-Jofré, V., Moreno, M., Reyes-Parada, M., and
Renard, G.M. (2021) Role of oxytocin and vasopressin
in neuropsychiatric disorders: therapeutic potential
of agonists and antagonists, Int.J. Mol. Sci., 22, 12077,
https://doi.org/10.3390/ijms222112077.
58. Wronikowska-Denysiuk,O., Mrozek,W., and Budzyńs-
ka, B. (2023) The role of oxytocin and vasopressin
in drug-induced reward-implications for social and
non-social factors, Biomolecules, 13, 405, https://
doi.org/10.3390/biom13030405.
59. Mellentin, A.I., Finn, S. W., Skøt,L., Thaysen-Peters-
en,D., Mistarz,N., Fink-Jensen,A., and Nielsen, D.G.
(2023) Theeffectiveness of oxytocin for treating sub-
stance use disorders: a systematic review of random-
ized placebo-controlled trials, Neurosci. Biobehav.
Rev., 151, 105185, https://doi.org/10.1016/j.neubiorev.
2023.105185.
60. Chen, X. L., Lu, G., Gong, Y. X., Zhao, L. C., Chen, J.,
Chi, Z.Q., Yang, Y.M., Chen,Z., Li, Q.L., and Liu, J.G.
(2007) Expression changes of hippocampal energy
metabolism enzymes contribute to behavioural ab-
normalities during chronic morphine treatment, Cell
Res., 17, 689-700, https://doi.org/10.1038/cr.2007.63.
61. Jiang,X., Li,J., and Ma, L. (2007) Metabolic enzymes
link morphine withdrawal with metabolic disorder,
Cell Res., 17, 741-743, https://doi.org/10.1038/cr.2007.75.
62. Weinsanto, I., Mouheiche, J., Laux-Biehlmann, A.,
Delalande, F., Marquette, A., Chavant, V., Gabel, F.,
Cianferani,S., Charlet,A., Parat, M.O., and Goumon,Y.
(2018) Morphine binds creatine kinaseB and inhib-
its its activity, Front. Cell. Neurosci., 12, 464, https://
doi.org/10.3389/fncel.2018.00464.
63. Sullivan, M., Fernandez-Aranda, F., Camacho-Bar-
cia,L., Harkin,A., Macrì,S., Mora-Maltas,B., Jiménez-
Murcia, S., O’Leary, A., Ottomana, A. M., Presta, M.,
Slattery, D., Scholtz, S., and Glennon, J. C. (2023) In-
sulin and disorders of behavioural flexibility, Neuros-
ci. Biobehav. Rev., 150, 105169, https://doi.org/10.1016/
j.neubiorev.2023.105169.
64. Dodd, S., Sominsky, L., Siskind, D., Bortolasci, C. C.,
Carvalho, A. F., Maes, M., Walker, A. J., Walder, K.,
Yung, A.R., Williams, L.J., Myles,H., Watson,T., and
Berk,M. (2022) The role of metformin as a treatment
for neuropsychiatric illness, Eur. Neuropsychophar-
macol., 64, 32-43, https://doi.org/10.1016/j.euroneuro.
2022.09.002.
65. Fatemi, I., Amirteimoury, M., Shamsizadeh, A., and
Kaeidi, A. (2018) The effect of metformin on mor-
phine analgesic tolerance and dependence in rats,
Res. Pharm. Sci., 13, 316-323, https://doi.org/10.4103/
1735-5362.235158.
66. Keshavarzi,S., Kermanshahi,S., Karami,L., Motagh-
inejad, M., Motevalian, M., and Sadr, S. (2019) Pro-
tective role of metformin against methamphetamine