INTRICATED pas de deux OF ADDICTED BRAIN AND BODY 1867
BIOCHEMISTRY (Moscow) Vol. 89 No. 11 2024
and addiction: evidence from neuroimaging and rele-
vance to treatment, BJPsych. Adv., 26, 367-378, https://
doi.org/10.1192/bja.2020.68.
14. Tan,B., Browne, C.J., Nöbauer,T., Vaziri,A., Friedman,
J.M., and Nestler, E.J. (2024) Drugs of abuse hijack a
mesolimbic pathway that processes homeostatic need,
Science, 384, eadk6742, https://doi.org/10.1126/science.
adk6742.
15. Wightman, R.M., and Robinson, D.L. (2002) Transient
changes in mesolimbic dopamine and their associa-
tion with ‘reward’, J.Neurochem., 82, 721-735, https://
doi.org/10.1046/j.1471-4159.2002.01005.x.
16. Ruisoto,P., and Contador, I. (2019) The role of stress
in drug addiction. An integrative review, Physiol.
Behav., 202, 62-68, https://doi.org/10.1016/j.physbeh.
2019.01.022.
17. Miller, A. P., Bogdan, R., Agrawal, A., and Hatoum,
A.S. (2024) Generalized genetic liability to substance
use disorders, J. Clin. Invest., 134, e172881, https://
doi.org/10.1172/JCI172881.
18. Koob, G.F., and Volkow, N. D. (2010) Neurocircuitry
of addiction, Neuropsychopharmacology, 35, 217-238,
https://doi.org/10.1038/npp.2009.110.
19. Peregud, D. I., Shirobokova, N. I., Kvichansky, A. A.,
Stepanichev, M. Yu., and Gulyaeva, N. V. (2024) Pur-
morphamine alters anxiety-like behavior and expres-
sion of hedgehog cascade components in rat brain
after alcohol withdrawal, Biochemistry (Moscow), 89,
1938-1949, https://doi.org/10.1134/S0006297924110087.
20. Vetrovoy, O. V., Potapova, S. S., Stratilov, V. A., and
Tyulkova, E.I. (2024) Prenatal hypoxia predisposes to
impaired expression of the chrna4 and chrna7 genes
in adult Rats without affecting acetylcholine metab-
olism during embryonic development, Biochemis-
try (Moscow), 89, 1950-1960, https://doi.org/10.1134/
S0006297924110099.
21. Sudakov, S.K., Bogdanova, N.G., Nazarova, G.A., and
Zolotov, N. N. (2024) Behavioral features and blood
enzyme activity in offspring of rats conceived from an
alcohol-intoxicated father, Biochemistry (Moscow), 89,
1930-1937, https://doi.org/10.1134/S0006297924110075.
22. Korpi, E.R., den Hollander,B., Farooq,U., Vashchink-
ina,E., Rajkumar,R., Nutt, D.J., Hyytiä,P., and Dawe,
G.S. (2015) Mechanisms of action and persistent neu-
roplasticity by drugs of abuse, Pharmacol. Rev., 67,
872-1004, https://doi.org/10.1124/pr.115.010967.
23. Nestler, E. J., and Lüscher, C. (2019) The molecular
basis of drug addiction: linking epigenetic to synaptic
and circuit mechanisms, Neuron, 102, 48-59, https://
doi.org/10.1016/j.neuron.2019.01.016.
24. Liu,X., Wang,F., Le,Q., and Ma,L. (2023) Cellular and
molecular basis of drug addiction: The role of neuro-
nal ensembles in addiction, Curr. Opin. Neurobiol., 83,
102813, https://doi.org/10.1016/j.conb.2023.102813.
25. Koob, G. F. (2021) Drug addiction: hyperkatifeia/neg-
ative reinforcement as a framework for medications
development, Pharmacol. Rev., 73, 163-201, https://
doi.org/10.1124/pharmrev.120.000083.
26. Milton, A. L. (2023) Drug memory reconsolidation:
from molecular mechanisms to the clinical context,
Transl. Psychiatry, 13, 370, https://doi.org/10.1038/
s41398-023-02666-1.
27. Garavan,H., Brennan, K.L., Hester,R., and Whelan,R.
(2013) The neurobiology of successful abstinence, Curr.
Opin. Neurobiol., 23, 668-674, https://doi.org/10.1016/
j.conb.2013.01.029.
28. Sinha, R. (2011) New findings on biological factors
predicting addiction relapse vulnerability, Curr. Psy-
chiatry Rep., 13, 398-405, https://doi.org/10.1007/
s11920-011-0224-0.
29. Ferrer-Pérez, C., Montagud-Romero, S., and Blanco-
Gandía, M. C. (2024) Neurobiological theories of ad-
diction: a comprehensive review, Psychoactives, 3, 35-
47, https://doi.org/10.3390/psychoactives3010003.
30. Parvaz, M.A., Rabin, R. A., Adams, F., and Goldstein,
R. Z. (2022) Structural and functional brain recovery
in individuals with substance use disorders during
abstinence: a review of longitudinal neuroimaging
studies, Drug Alcohol Depend., 232, 109319, https://
doi.org/10.1016/j.drugalcdep.2022.109319.
31. Peregud, D. I., Baronets, V. Y., Terebilina, N. N., and
Gulyaeva, N. V. (2023) Role of BDNF in neuroplasti-
city associated with alcohol dependence, Biochem-
istry (Moscow), 88, 404-416, https://doi.org/10.1134/
S0006297923030094.
32. Kolik, L. G., Konstantinipolsky, M. A., Nikolaev, S. V.,
Logvinov, I. O., Antipova, T. A., and Gudasheva, T.A.
(2024) Low-molecular neurotrophin-3 mimetics with
different patterns of postreceptor signaling activa-
tion attenuate differentially morphine withdrawal
in rats, Biochemistry (Moscow), 89, 1961-1969, https://
doi.org/10.1134/S0006297924110105.
33. Severtsev, V. V., Pavkina, M. A., Ivanets, N. N., Vin-
nikova, M.A., and Yakovlev, A.A. (2024) Extracellular
vesicles as potential biomarkers in addictive disor-
ders, Biochemistry (Moscow), 89, 1970-1984, https://
doi.org/10.1134/S0006297924110117.
34. Nardi, W. R., Kelly, P., Roy, A., Becker, S., Brewer, J.,
and Sun,S. (2024) A systematic review and meta-anal-
ysis of psychosocial interventions for persons with co-
morbid anxiety and substance use disorders, J.Subst.
Use Addict. Treat., 165, 209442, https://doi.org/10.1016/
j.josat.2024.209442.
35. De Aguiar, A. C. L., and Bloc, L. G. (2024) Transdiag-
nosis of alcohol use and psychopathologies: a system-
atic review, Addict. Behav. Rep., 19, 100543, https://
doi.org/10.1016/j.abrep.2024.100543.
Publisher’s Note. Pleiades Publishing remains
neutral with regard to jurisdictional claims in published
maps and institutional affiliations. AI tools may have
been used in the translation or editing of this article.