GLIOBLASTOMA SENSITIZATION BY GLUTAMINE DEPRIVATION 1755
BIOCHEMISTRY (Moscow) Vol. 89 No. 10 2024
7. Márquez, J., Alonso, F. J., Matés, J. M., Segura, J. A.,
Martín-Rufián,M., and Campos-Sandoval, J.A. (2017)
Glutamine addiction in gliomas, Neurochem. Res., 42,
1735-1746, https://doi.org/10.1007/s11064-017-2212-1.
8. Yin,H., Liu,Y., Dong, Q., Wang,H., Yan, Y., Wang,X.,
Wan,X., Yuan,G., and Pan,Y. (2024) The mechanism
of extracellular CypB promotes glioblastoma adap-
tation to glutamine deprivation microenvironment,
Cancer Lett., 597, 216862, https://doi.org/10.1016/
j.canlet.2024.216862.
9. Jia, J.L., Alshamsan,B., and Ng, T.L. (2023) Temozolo-
mide chronotherapy in glioma: a systematic review,
Curr. Oncol., 30, 1893-1902, https://doi.org/10.3390/
curroncol30020147.
10. Kuijlen, J.M., Mooij, J.J.A., Platteel,I., Hoving, E.W.,
Van Der Graaf, W.T.A., Span, M.M., Hollema,H., and
den Dunnen, W. F. A. (2006) TRAIL-receptor expres-
sion is an independent prognostic factor for survival
in patients with a primary glioblastoma multiforme,
J. Neuro Oncol., 78, 161-171, https://doi.org/10.1007/
s11060-005-9081-1.
11. Thang,M., Mellows, C., Mercer-Smith, A., Nguyen, P.,
and Hingtgen, S. (2023) Current approaches in en-
hancing TRAIL therapies in glioblastoma, Neuro On-
col. Adv., 5, vdad047, https://doi.org/10.1093/noajnl/
vdad047.
12. Galli,U., Colombo,G., Travelli,C., Tron, G.C., Genaz-
zani, A.A., and Grolla, A.A. (2020) Recent advances
in NAMPT inhibitors: a novel immunotherapic strate-
gy, Front. Pharmacol., 11, 656, https://doi.org/10.3389/
fphar.2020.00656.
13. Fung, M.K.L., and Chan, G.C.-F. (2017) Drug-induced
amino acid deprivation as strategy for cancer thera-
py, J.Hematol. Oncol., 10, 144, https://doi.org/10.1186/
s13045-017-0509-9.
14. Jin, J., Byun, J.-K., Choi, Y.-K., and Park, K.-G. (2023)
Targeting glutamine metabolism as a therapeutic
strategy for cancer, Exp. Mol. Med., 55, 706-715, https://
doi.org/10.1038/s12276-023-00971-9.
15. Jezierzański,M., Nafalska, N., Stopyra,M., Furgoł, T.,
Miciak, M., Kabut, J., and Gisterek-Grocholska, I.
(2024) Temozolomide (TMZ) in the treatment of glio-
blastoma multiforme – a literature review and clini-
cal outcomes, Curr. Oncol., 31, 3994-4002, https://doi.
org/10.3390/curroncol31070296.
16. Gasparian, M. E., Chernyak, B. V., Dolgikh, D. A.,
Yagolovich, A. V., Popova, E. N., Sycheva, A. M.,
Moshkovskii, S. A., and Kirpichnikov, M. P. (2009)
Generation of new TRAIL mutants DR5-A and DR5-B
with improved selectivity to death receptor 5,
Apoptosis, 14, 778-787, https://doi.org/10.1007/s10495-
009-0349-3.
17. Watson,M., Roulston,A., Bélec,L., Billot,X., Marcel-
lus,R., Bédard,D., Bernier,C., Branchaud,S., Chan,H.,
Dairi, K., Gilbert, K., Goulet, D., Gratton, M.-O.,
Isakau, H., Jang, A., Khadir, A., Koch,E., Lavoie, M.,
Lawless, M., Nguyen, M., Paquette, D., Turcotte, É.,
Berger, A., Mitchell, M., Shore, G. C., and Beaupar-
lant,P. (2009) The small molecule GMX1778 is a potent
inhibitor of NAD
+
biosynthesis: strategy for enhanced
therapy in nicotinic acid phosphoribosyltransferase
1-deficient tumors, Mol. Cell. Biol., 29, 5872-5888,
https://doi.org/10.1128/MCB.00112-09.
18. Love, M.I., Huber,W., and Anders,S. (2014) Moderat-
ed estimation of fold change and dispersion for RNA-
seq data with DESeq2, Genome Biol., 15, 550, https://
doi.org/10.1186/s13059-014-0550-8.
19. Liberzon, A., Subramanian, A., Pinchback, R., Thor-
valdsdóttir, H., Tamayo, P., and Mesirov, J. P. (2011)
Molecular signatures database (MSigDB) 3.0, Bio-
informatics, 27, 1739-1740, https://doi.org/10.1093/
bioinformatics/btr260.
20. Fang,Z., Liu, X., and Peltz, G. (2023) GSEApy: a com-
prehensive package for performing gene set enrich-
ment analysis in Python, Bioinformatics, 39, btac757,
https://doi.org/10.1093/bioinformatics/btac757.
21. Ashburner,M., Ball, C.A., Blake, J.A., Botstein,D., But-
ler,H., Cherry, J.M., Davis, A.P., Dolinski,K., Dwight,
S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel- Tarver,L.,
Kasarskis,A., Lewis,S., Matese, J.C., Richardson, J.E.,
Ringwald, M., Rubin, G. M., and Sherlock, G. (2000)
Gene Ontology: tool for the unification of biology, Nat.
Genet., 25, 25-29, https://doi.org/10.1038/75556.
22. Kanehisa, M. (2000) KEGG: Kyoto encyclopedia of
genes and genomes, Nucleic Acids Res., 28, 27-30,
https://doi.org/10.1093/nar/28.1.27.
23. Gillespie,M., Jassal,B., Stephan,R., Milacic,M., Roth-
fels, K., Senff-Ribeiro, A., Griss, J., Sevilla, C., Mat-
thews,L., Gong,C., Deng,C., Varusai,T., Ragueneau,E.,
Haider, Y., May, B., Shamovsky, V., Weiser, J., Brun-
son,T., Sanati,N., Beckman,L., Shao,X., Fabregat,A.,
Sidiropoulos,K., Murillo,J., Viteri,G., Cook,J., Shors-
er,S., Bader,G., Demir,E., Sander,C., Haw,R., Wu,G.,
Stein, L., Hermjakob, H., and D’Eustachio, P. (2022)
The reactome pathway knowledgebase 2022, Nucleic
Acids Res., 50, D687-D692, https://doi.org/10.1093/nar/
gkab1028.
24. Martens,M., Ammar,A., Riutta,A., Waagmeester, A.,
Slenter, D. N., Hanspers, K., Miller, R. A., Digles, D.,
Lopes, E. N., Ehrhart, F., Dupuis, L. J., Winckers,
L.A., Coort, S.L., Willighagen, E.L., Evelo, C.T., Pico,
A.R., and Kutmon,M. (2021) WikiPathways: connect-
ing communities, Nucleic Acids Res., 49, D613-D621,
https://doi.org/10.1093/nar/gkaa1024.
25. Schaefer, C. F., Anthony, K., Krupa, S., Buchoff, J.,
Day,M., Hannay,T., and Buetow, K.H. (2009) PID: the
pathway interaction database, Nucleic Acids Res., 37,
D674-D679, https://doi.org/10.1093/nar/gkn653.
26. Xie,X., Lu,J., Kulbokas, E.J., Golub, T.R., Mootha,V.,
Lindblad-Toh, K., Lander, E. S., and Kellis,M. (2005)
Systematic discovery of regulatory motifs in human
promoters and 3′ UTRs by comparison of several