PLACENTAL TRANSPORT OF AMINO ACIDS IN HHcy 1725
BIOCHEMISTRY (Moscow) Vol. 89 No. 10 2024
performance and decline– a review, Biomolecules, 11,
1546, https://doi.org/10.3390/biom11101546.
40. Sauls, D.L., Arnold, E.K., Bell, C.W., Allen, J. C., and
Hoffman, M. (2007) Pro-thrombotic and pro-oxi-
dant effects of diet-induced hyperhomocysteinemia,
Thrombosis Res., 120, 117-126, https://doi.org/10.1016/
j.thromres.2006.08.001.
41. Ditscheid, B., Funfstuck, R., Busch, M., Schubert, R.,
Gerth,J., and Jahreis,G. (2005) Effect of L-methionine
supplementation on plasma homocysteine and other
free amino acids: a placebo-controlled double-blind
cross-over study, Eur.J. Clin. Nutr., 59, 768-775, https://
doi.org/10.1038/sj.ejcn.1602138.
42. Andersson, A., Brattstrom, L., Israelsson, B., Isaks-
son, A., and Hultberg, B. (1990) The effect of ex-
cess daily methionine intake on plasma homocys-
teine after a methionine loading test in humans,
Clin. Chim. Acta, 192, 69-76, https://doi.org/10.1016/
0009-8981(90)90273-u.
43. Benevenga, N. J., and Steele, R. D. (1984) Adverse ef-
fects of excessive consumption of amino acids, Annu.
Rev. Nutr., 4, 157-181, https://doi.org/10.1146/annurev.
nu.04.070184.001105.
44. Terstappen, F., Tol, A. J. C., Gremmels, H., Wever,
K.E., Paauw, N.D., Joles, J.A., Beek, E.M.V., and Lely,
A. T. (2020) Prenatal amino acid supplementation to
improve fetal growth: a systematic review and me-
ta-analysis, Nutrients, 12, 2535, https://doi.org/10.3390/
nu12092535.
45. Stanescu,S., Belanger-Quintana,A., Fernandez-Felix,
B.M., Ruiz-Sala,P., Del Valle,M., Garcia,F., Arrieta,F.,
and Martinez-Pardo,M. (2022) Interorgan amino acid
interchange in propionic acidemia: the missing key to
understanding its physiopathology, Amino Acids, 54,
777-786, https://doi.org/10.1007/s00726-022-03128-6.
46. Benevenga, N. J. (1974) Toxicities of methionine and
other amino acids, J.Agric. Food Chem., 22, 2-9, https://
doi.org/10.1021/jf60191a036.
47. Cleal, J.K., Lofthouse, E.M., Sengers, B.G., and Lewis,
R.M. (2018) Asystems perspective on placental amino
acid transport, J. Physiol., 596, 5511-5522, https://doi.
org/10.1113/JP274883.
48. McIntyre, K. R., Hayward, C. E., Sibley, C. P., Green-
wood, S. L., and Dilworth, M. R. (2019) Evidence of
adaptation of maternofetal transport of glutamine
relative to placental size in normal mice, and in those
with fetal growth restriction, J. Physiol., 597, 4975-
4990, https://doi.org/10.1113/JP278226.
49. Hussain,T., Tan,B., Murtaza,G., Metwally,E., Yang,H.,
Kalhoro, M. S., Kalhoro, D. H., Chughtai, M. I., and
Yin, Y. (2020) Role of dietary amino acids and nutri-
ent sensing system in pregnancy associated disorders,
Front. Pharmacol., 11, 586979, https://doi.org/10.3389/
fphar.2020.586979.
50. Huang, H., Vandekeere, S., Kalucka, J., Bierhansl, L.,
Zecchin, A., Bruning, U., Visnagri,A., Yuldasheva, N.,
Goveia,J., Cruys,B., Brepoels,K., Wyns,S., Rayport,S.,
Ghesquiere,B., Vinckier,S., Schoonjans,L., Cubbon,R.,
Dewerchin,M., Eelen,G., and Carmeliet,P. (2017) Role
of glutamine and interlinked asparagine metabolism
in vessel formation, EMBO J., 36, 2334-2352, https://
doi.org/10.15252/embj.201695518.
51. Bonnin,A., Goeden,N., Chen,K., Wilson, M.L., King,J.,
Shih, J. C., Blakely, R. D., Deneris, E.S., and Levitt, P.
(2011) A transient placental source of serotonin for
the fetal forebrain, Nature, 472, 347-350, https://
doi.org/10.1038/nature09972.
52. Bonnin, A., and Levitt, P. (2011) Fetal, maternal,
and placental sources of serotonin and new im-
plications for developmental programming of the
brain, Neuroscience, 197, 1-7, https://doi.org/10.1016/
j.neuroscience.2011.10.005.
53. Mao,J., Jain,A., Denslow, N.D., Nouri, M.Z., Chen,S.,
Wang,T., Zhu, N., Koh,J., Sarma, S.J., Sumner, B. W.,
Lei, Z., Sumner, L. W., Bivens, N. J., Roberts, R. M.,
Tuteja,G., and Rosenfeld, C.S. (2020) BisphenolA and
bisphenolS disruptions of the mouse placenta and po-
tential effects on the placenta-brain axis, Proc. Natl.
Acad. Sci. USA, 117, 4642-4652, https://doi.org/10.1073/
pnas.1919563117.
54. Woods,L., Perez-Garcia,V., and Hemberger,M. (2018)
Regulation of placental development and its impact on
fetal growth-new insights from mouse models, Front.
Endocrinol. (Lausanne), 9, 570, https://doi.org/10.3389/
fendo.2018.00570.
55. Baskurt, O.K., and Meiselman, H.J. (2012) Iatrogenic hy-
perviscosity and thrombosis, Semin. Thromb. Hemost.,
38, 854-864, https://doi.org/10.1055/s-0032-1325616.
56. Winterhager, E., and Gellhaus, A. (2017) Transpla-
cental nutrient transport mechanisms of intrauter-
ine growth restriction in rodent models and hu-
mans, Front. Physiol., 8, 951, https://doi.org/10.3389/
fphys.2017.00951.
57. Rosario, F. J., Kanai, Y., Powell, T. L., and Jansson, T.
(2015) Increased placental nutrient transport in a
novel mouse model of maternal obesity with fetal
overgrowth, Obesity (Silver Spring), 23, 1663-1670,
https://doi.org/10.1002/oby.21165.
58. Aye, I.L., Rosario, F. J., Powell, T. L., and Jansson, T.
(2015) Adiponectin supplementation in pregnant mice
prevents the adverse effects of maternal obesity on
placental function and fetal growth, Proc. Natl. Acad.
Sci. USA, 112, 12858-12863, https://doi.org/10.1073/
pnas.1515484112.
59. Huang, Z., Huang, S., Song, T., Yin, Y., and Tan, C.
(2021) Placental angiogenesis in mammals: a review
of the regulatory effects of signaling pathways and
functional nutrients, Adv. Nutr., 12, 2415-2434, https://
doi.org/10.1093/advances/nmab070.
60. Yung, H. W., Hemberger, M., Watson, E. D., Senner,
C.E., Jones, C.P., Kaufman, R.J., Charnock-Jones, D.S.,
and Burton, G.J. (2012) Endoplasmic reticulum stress