METFORMIN, AMPROLIUM, AND AMINO ACIDS IN THE RAT BRAIN 1709
BIOCHEMISTRY (Moscow) Vol. 89 No. 10 2024
smooth muscle, Exp. Physiol., 79, 681-689, https://
doi.org/10.1113/expphysiol.1994.sp003800.
41. Artiukhov, A.V., Aleshin, V.A., Karlina, I. S., Kazant-
sev, A.V., Sibiryakina, D.A., Ksenofontov, A.L., Luka-
shev, N.V., Graf, A.V., and Bunik, V.I. (2022) Phospho-
nate inhibitors of pyruvate dehydrogenase perturb
homeostasis of amino acids and protein succinyla-
tion in the brain, Int. J. Mol. Sci., 23, 13186, https://
doi.org/10.3390/ijms232113186.
42. Artiukhov, A.V., Pometun, A.A., Zubanova, S.A., Tish-
kov, V.I., and Bunik, V.I. (2020) Advantages of formate
dehydrogenase reaction for efficient NAD(+) quanti-
fication in biological samples, Anal. Biochem., 603,
113797, https://doi.org/10.1016/j.ab.2020.113797.
43. Kochetov, G. A. (1982) Transketolase from yeast, rat
liver, and pig liver, Methods Enzymol., 90, 209-223,
https://doi.org/10.1016/s0076-6879(82)90128-8.
44. Artiukhov, A. V., Solovjeva, O. N., Balashova, N. V.,
Sidorova, O. P., Graf, A. V., and Bunik, V. I. (2024)
Pharmacological doses of thiamine benefit patients
with the Charcot–Marie–Tooth neuropathy by chang-
ing thiamine diphosphate levels and affecting regu-
lation of thiamine-dependent enzymes, Biochemis-
try (Moscow), 89, 1161-1182, https://doi.org/10.1134/
S0006297924070010.
45. Huang, H. M., Chen, H. L., and Gibson, G. E. (2010)
Thiamine and oxidants interact to modify cellular
calcium stores, Neurochem. Res., 35, 2107-2116, https://
doi.org/10.1007/s11064-010-0242-z.
46. Karuppagounder, S. S., Xu, H., Shi, Q., Chen, L. H.,
Pedrini, S., Pechman, D., Baker, H., Beal, M. F., Gan-
dy, S. E., and Gibson, G. E. (2009) Thiamine defi-
ciency induces oxidative stress and exacerbates the
plaque pathology in Alzheimer’s mouse model, Neu-
robiol. Aging, 30, 1587-1600, https://doi.org/10.1016/
j.neurobiolaging.2007.12.013.
47. Nicoletti, V.G., Santoro, A.M., Grasso,G., Vagliasindi,
L.I., Giuffrida, M.L., Cuppari,C., Purrello, V.S., Stella,
A. M., and Rizzarelli, E. (2007) Carnosine interac-
tion with nitric oxide and astroglial cell protection,
J.Neurosci. Res., 85, 2239-2245, https://doi.org/10.1002/
jnr.21365.
48. Ke, C. J., He, Y. H., He, H. W., Yang, X., Li, R., and
Yuan, J. (2014) A new spectrophotometric assay for
measuring pyruvate dehydrogenase complex activi-
ty: a comparative evaluation, Anal. Methods, 6, 6381-
6388, https://doi.org/10.1039/c4ay00804a.
49. Roelofs, K. (2017) Freeze for action: neurobiological
mechanisms in animal and human freezing, Philos.
Trans. R. Soc. Lond. B Biol. Sci., 372, 20160206, https://
doi.org/10.1098/rstb.2016.0206.
50. Page, S. W. (2008) Antiparasitic drugs, in Small Animal
Clinical Pharmacology (Maddison, J. E., Page, S. W.,
and Church, D.B., eds) Saunders Ltd., Philadelphia,
pp. 198-260, https://doi.org/10.1016/B978-070202858-
8.50012-9.
51. Bunik, V.I., Artiukhov, A.V., Kazantsev, A.V., Aleshin,
V.A., Boyko, A.I., Ksenofontov, A.L., Lukashev, N.V.,
and Graf, A.V. (2022) Administration of phosphonate
inhibitors of dehydrogenases of 2-oxoglutarate and
2-oxoadipate to rats elicits target-specific metabolic
and physiological responses, Front. Chem., 10, 892284,
https://doi.org/10.3389/fchem.2022.892284.
52. Sambon, M., Pavlova, O., Alhama-Riba, J., Wins, P.,
Brans,A., and Bettendorff, L. (2022) Product inhibi-
tion of mammalian thiamine pyrophosphokinase is
an important mechanism for maintaining thiamine
diphosphate homeostasis, Biochim. Biophys. Acta
Gen. Subj., 1866, 130071, https://doi.org/10.1016/j.
bbagen.2021.130071.
53. Bunik, V. I., Raddatz, G., and Strumilo, S. A. (2013)
Translating enzymology into metabolic regulation:
the case of the 2-oxoglutarate dehydrogenase mul-
tienzyme complex, Curr. Chem. Biol., 7, 74-93, https://
doi.org/10.2174/2212796811307010008.
54. Graf,A., Trofimova,L., Ksenofontov,A., Baratova,L.,
and Bunik, V. (2020) Hypoxic adaptation of mito-
chondrial metabolism in rat cerebellum decreases
in pregnancy, Cells, 9, 139, https://doi.org/10.3390/
cells9010139.
55. Kazyken, D., Dame, S.G., Wang, C., Wadley, M., and
Fingar, D. C. (2024) Unexpected roles for AMPK in
the suppression of autophagy and the reactivation
of MTORC1 signaling during prolonged amino acid
deprivation, Autophagy, 20, 2017-2040, https://doi.org/
10.1080/15548627.2024.2355074.
56. Barnaba,C., Broadbent, D.G., Kaminsky, E.G., Perez,
G.I., and Schmidt, J.C. (2024) AMPK regulates phago-
phore-to-autophagosome maturation, J.Cell Biol., 223,
e202309145, https://doi.org/10.1083/jcb.202309145.
57. Seliger, C., Rauer, L., Wuster, A. L., Moeckel,S., Leid-
gens, V., Jachnik, B., Ammer, L. M., Heckscher, S.,
Dettmer,K., Riemenschneider, M.J., Oefner, P.J., Proe-
scholdt,M., Vollmann-Zwerenz,A., and Hau,P. (2023)
Heterogeneity of amino acid profiles of proneural and
mesenchymal brain-tumor initiating cells, Int. J. Mol.
Sci., 24, 3199, https://doi.org/10.3390/ijms24043199.
58. Welch,N., Singh, S.S., Kumar,A., Dhruba, S.R., Mish-
ra,S., Sekar, J., Bellar, A., Attaway, A. H., Chelluboy-
ina, A., Willard, B. B., Li, L., Huo, Z., Karnik, S. S.,
Esser,K., Longworth, M.S., Shah, Y. M., Davuluri, G.,
Pal,R., and Dasarathy,S. (2021) Integrated multiom-
ics analysis identifies molecular landscape pertur-
bations during hyperammonemia in skeletal muscle
and myotubes, J. Biol. Chem., 297, 101023, https://
doi.org/10.1016/j.jbc.2021.101023.
59. Fitzpatrick, S. M., Hetherington, H. P., Behar, K. L.,
and Shulman, R.G. (1989) Effects of acute hyperam-
monemia on cerebral amino acid metabolism and
pHi in vivo, measured by 1H and 31P nuclear mag-
netic resonance, J. Neurochem., 52, 741-749, https://
doi.org/10.1111/j.1471-4159.1989.tb02517.x.