MEDORO et al.1690
BIOCHEMISTRY (Moscow)
emerging opportunities against aging and diseases,
Free Radic. Biol. Med., 193, 736-750, https://doi.org/
10.1016/j.freeradbiomed.2022.11.017.
9. Dayalan Naidu,S., and Dinkova-Kostova, A.T. (2020)
KEAP1, a cysteine-based sensor and a drug target for
the prevention and treatment of chronic disease, Open
Biol., 10, 200105, https://doi.org/10.1098/rsob.200105.
10. Lee,S., and Hu,L. (2020) Nrf2 activation through the
inhibition of Keap1-Nrf2 protein-protein interaction,
Med. Chem. Res., 29, 846-867, https://doi.org/10.1007/
s00044-020-02539-y.
11. Crisman, E., Duarte, P., Dauden, E., Cuadrado, A.,
Rodríguez-Franco, M. I., López, M. G., and León, R.
(2023) KEAP1-NRF2 protein-protein interaction inhib-
itors: design, pharmacological properties and ther-
apeutic potential, Med. Res. Rev., 43, 237-287, https://
doi.org/10.1002/med.21925.
12. Pallesen, J.S., Tran, K.T., and Bach,A. (2018) Non-co-
valent small-molecule Kelch-like ECH-associated
protein 1-nuclear factor erythroid 2-related Factor2
(Keap1-Nrf2) Inhibitors and their potential for target-
ing central nervous system diseases, J. Med. Chem.,
61, 8088-8103, https://doi.org/10.1021/acs.jmedchem.
8b00358.
13. Leung, C.H., Zhang, J.T., Yang, G.J., Liu,H., Han, Q.B.,
and Ma, D.L. (2019) Emerging screening approaches
in the development of Nrf2-Keap1 protein-protein in-
teraction inhibitors, Int.J. Mol. Sci., 20, 4445, https://
doi.org/10.3390/ijms20184445.
14. Davinelli, S., Ali, S., Solfrizzi, V., Scapagnini, G., and
Corbi, G. (2021) Carotenoids and cognitive out-
comes: a meta-analysis of randomized intervention
trials, Antioxidants, 10, 223, https://doi.org/10.3390/
antiox10020223.
15. Saini, R. K., Keum, Y. S., Daglia, M., and Rengasamy,
K. R. (2020) Dietary carotenoids in cancer chemo-
prevention and chemotherapy: a review of emerg-
ing evidence, Pharmacol. Res., 157, 104830, https://
doi.org/10.1016/j.phrs.2020.104830.
16. Medoro,A., Intrieri,M., Passarella,D., Willcox, D.C.,
Davinelli, S., and Scapagnini, G. (2024) Astaxanthin
as a metabolic regulator of glucose and lipid homeo-
stasis, J. Funct. Foods, 112, 105937, https://doi.org/
10.1016/j.jff.2023.105937.
17. Thomas, S.E., and Johnson, E.J. (2018) Xanthophylls,
Adv. Nutr., 9, 160, https://doi.org/10.1093/advances/
nmx005.
18. Pereira, A. G., Otero, P., Echave, J., Carreira-Casa-
is, A., Chamorro, F., Collazo, N., Jaboui, A., Lou-
renço-Lopes, C., Simal-Gandara, J., and Prieto, M. A.
(2021) Xanthophylls from the sea: algae as source
of bioactive carotenoids, Mar. Drugs, 19, 188, https://
doi.org/10.3390/md19040188.
19. Davinelli, S., Saso, L., D’angeli, F., Calabrese, V., In-
trieri, M., and Scapagnini, G. (2022) Astaxanthin
as a modulator of Nrf2, NF-κB, and their crosstalk:
molecular mechanisms and possible clinical appli-
cations, Molecules, 27, 502, https://doi.org/10.3390/
molecules27020502.
20. Zou,X., Gao,J., Zheng,Y., Wang,X., Chen,C., Cao,K.,
Xu,J., Li,Y., Lu,W., Liu,J., and Feng,Z. (2014) Zeaxan-
thin induces Nrf2-mediated phase II enzymes in pro-
tection of cell death, Cell Death Dis., 55, e1218, https://
doi.org/10.1038/cddis.2014.190.
21. Chang, J., Zhang, Y., Li, Y., Lu, K., Shen, Y., Guo, Y.,
Qi,Q., Wang,M., and Zhang,S. (2018) NrF2/ARE and
NF-κB pathway regulation may be the mechanism
for lutein inhibition of human breast cancer cell,
Futur. Oncol., 14, 719-726, https://doi.org/10.2217/
fon-2017-0584.
22. Wu, W., Han, H., Liu, J., Tang, M., Wu, X., Cao, X.,
Zhao,T., Lu,Y., Niu, T., Chen, J., and Chen, H. (2021)
Fucoxanthin prevents 6-OHDA-induced neurotox-
icity by targeting Keap1, Oxid. Med. Cell. Longev.,
2021, 6688708, https://doi.org/10.1155/2021/6688708.
23. Ahmed, F., Fanning, K., Netzel, M., and Schenk,
P. M. (2015) Induced carotenoid accumulation in
Dunaliella salina and Tetraselmis suecica by plant
hormones and UV-C radiation, Appl. Microbiol. Bio-
technol., 99, 9407-9416, https://doi.org/10.1007/s00253-
015-6792-x.
24. Pasquet,V., Morisset,P., Ihammouine,S., Chepied,A.,
Aumailley, L., Berard, J. B., Serive, B., Kaas, R., Lan-
neluc, I., Thiery, V., Lafferriere, M., Piot, J. M.,
Patrice,T., Cadoret, J.P., and Picot,L. (2011) Antiprolif-
erative activity of violaxanthin isolated from bioguid-
ed fractionation of Dunaliella tertiolecta extracts, Mar.
Drugs, 9, 819-831, https://doi.org/10.3390/md9050819.
25. Abe, K., Hattori, H., and Hirano, M. (2007) Accumu-
lation and antioxidant activity of secondary carot-
enoids in the aerial microalga Coelastrella striolata
var. multistriata, Food Chem., 100, 656-661, https://
doi.org/10.1016/j.foodchem.2005.10.026.
26. Xia,S., Wang,K., Wan,L., Li,A., Hu,Q., and Zhang,C.
(2013) Production, characterization, and antioxi-
dant activity of fucoxanthin from the marine diatom
Odontella aurita, Mar. Drugs, 11, 2667-2681, https://
doi.org/10.3390/md11072667.
27. Přibyl,P., Pilný,J., Cepák, V., and Kaštánek,P. (2016)
The role of light and nitrogen in growth and carot-
enoid accumulation in Scenedesmus sp., Algal Res.,
16, 69-75, https://doi.org/10.1016/j.algal.2016.02.028.
28. Neumann, U., Derwenskus, F., Flister, V. F., Schmid-
Staiger,U., Hirth,T., and Bischoff, S.C. (2019) Fucox-
anthin, A carotenoid derived from phaeodactylum
tricornutum exerts antiproliferative and antioxidant
activities in vitro, Antioxidants, 8, 183, https://doi.
org/10.3390/antiox8060183.
29. Medoro, A., Davinelli, S., Milella, L., Willcox, B. J.,
Allsopp, R. C., Scapagnini, G., and Willcox, D. C.
(2023) Dietary astaxanthin: a promising antioxi-
dant and anti-inflammatory agent for brain aging