COOPER, DENTON1678
BIOCHEMISTRY (Moscow) Vol. 89 No. 10 2024
Consonni, S.R., Mattei,S., Mahamid,J., Portugal, R.V.,
Ambrosio, A.L.B., and Dias, S.M.G. (2023) Molecular
mechanism of glutaminase activation through fila-
mentation and the role of filaments in mitophagy pro-
tection, Nat. Struct. Mol. Biol., 30, 1902-1912, https://
doi.org/10.1038/s41594-023-01118-0.
84. Harding, J.J., Telli,M., Munster,P., Voss, M.H., Infan-
te, J. R., DeMichele, A., Dunphy,M., Le, M. H., Molin-
eaux,C., Orford,K., Parlati,F., Whiting, S.H., Bennett,
M. K., Tannir, N. M., and Meric-Bernstam, F. (2021)
A phase I dose-escalation and expansion study of
telaglenastat in patients with advanced or metastatic
solid tumors, Clin. Cancer Res., 27, 4994-5003, https://
doi.org/10.1158/1078-0432.ccr-21-1204.
85. Meric-Bernstam, F., Tannir, N. M., Iliopoulos, O.,
Lee, R. J., Telli, M.L., Fan, A. C., DeMichele,A., Haas,
N. B., Patel, M. R., Harding, J. J., Voss, M. H., Owon-
ikoko, T. K., Carthon,B., Srinivasan, R., Bendell, J. C.,
Jenkins, Y., Whiting, S.H., Orford, K., Bennett, M. K.,
and Bauer, T. M. (2022) Telaglenastat plus cabozan-
tinib or everolimus for advanced or metastatic renal
cell carcinoma: an open-label phaseI trial, Clin. Can-
cer Res., 28, 1540-1548, https://doi.org/10.1158/1078-
0432.ccr-21-2972.
86. Lee, C. H., Motzer, R., Emamekhoo, H., Matrana, M.,
Percent,I., Hsieh, J.J., Hussain,A., Vaishampayan,U.,
Liu, S., McCune, S., Patel, V., Shaheen, M., Bendell, J.,
Fan, A. C., Gartrell, B. A., Goodman, O. B., Nikolina-
kos, P.G., Kalebasty, A.R., Zakharia,Y., Zhang,Z., etal.
(2022) Telaglenastat plus everolimus in advanced re-
nal cell carcinoma: a randomized, double-blinded,
placebo-controlled, phaseII entrata trial, Clin. Cancer
Res., 28, 3248-3255, https://doi.org/10.1158/1078-0432.
ccr-22-0061.
87. Tannir, N. M., Agarwal, N., Porta, C., Lawrence, N. J.,
Motzer,R., McGregor,B., Lee, R.J., Jain, R.K., Davis,N.,
Appleman, L. J., Goodman,O., Jr., Stadler, W. M., Gand-
hi, S., Geynisman, D. M., Iacovelli, R., Mellado, B.,
Sepúlveda Sánchez, J. M., Figlin, R., Powles, T., Akel-
la, L., et al. (2022) Efficacy and safety of telaglenas-
tat plus cabozantinib vs placebo plus cabozantinib
in patients with advanced renal cell carcinoma: the
CANTATA randomized clinical trial, JAMA Oncol., 8,
1411-1418, https://doi.org/10.1001/jamaoncol.2022.3511.
88. Cooper, A. J. L., Dorai, T., Pinto, J. T., and Denton,
T. T. (2022) α-Ketoglutaramate – a key metabolite
contributing to glutamine addiction in cancer cells,
Front. Med., 13, 1035335, https://doi.org/10.3389/
fmed.2022.1035335.
89. Udupa, S., Nguyen, S., Hoang, G., Nguyen, T.,
Quinones, A., Pham, K., Asaka, R., Nguyen, K.,
Zhang, C., Elgogary, A., Jung, J. G., Xu, Q., Fu, J.,
Thomas, A.G., Tsukamoto,T., Hanes,J., Slusher, B.S.,
Cooper, A.J. L., and Le, A. (2019) Upregulation of the
glutaminase II pathway contributes to glutamate
production upon glutaminase I inhibition in pancre-
atic cancer, Proteomics, 19, e1800451, https://doi.org/
10.1002/pmic.201800451.
90. Pham, K., Hanaford, A. R., Poore, B. A., Maxwell,
M. J., Sweeney, H., Parthasarathy, A., Alt, J., Rais, R.,
Slusher, B.S., Eberhart, C.G., and Raabe, E. H. (2022)
Comprehensive metabolic profiling of MYC-amplified
medulloblastoma tumors reveals key dependencies on
amino acid, tricarboxylic acid and hexosamine path-
ways, Cancers (Basel), 14, 1311, https://doi.org/10.3390/
cancers14051311.
91. Ogier, G., Chantepie, J., Deshayes, C., Chantegrel, B.,
Charlot, C., Doutheau, A., and Quash, G. (1993) Con-
tribution of 4-methylthio-2-oxobutanoate and its
transaminase to the growth of methionine-depen-
dent cells in culture. Effect of transaminase inhib-
itors, Biochem. Pharmacol., 45, 1631-1644, https://
doi.org/10.1016/0006-2952(93)90304-f.
92. Quash,G., Roch, A.M., Charlot,C., Chantepie,J., Thom-
as,V., Hamedi-Sangsari,F., and Vila,J. (2004) 4-meth-
ylthio 2-oxobutanoate transaminase: a specific target
for antiproliferative agents, Bull. Cancer, 91, E61-E79.
93. Nematollahi, A., Sun, G., Jayawickrama, G. S., and
Church, W. B. (2016) Kynurenine aminotransferase
isozyme inhibitors: a review, Int. J. Mol. Sci., 17, 946,
https://doi.org/10.3390/ijms17060946.
94. Townsend, D. M., Tew, K. D., He, L., King, J. B., and
Hanigan, M. H. (2009) Role of glutathione S-transfer-
ase Pi in cisplatin-induced nephrotoxicity, Biomed.
Pharmacother., 63, 79-85, https://doi.org/10.1016/
j.biopha.2008.08.004.
95. Cooper, A. J., Bruschi, S. A., Iriarte, A., and Martinez-
Carrion, M. (2002) Mitochondrial aspartate amino-
transferase catalyses cysteine S-conjugate beta-lyase
reactions, Biochem. J., 368, 253-261, https://doi.org/
10.1042/bj20020531.
96. Zhang, L., Cooper, A. J., Krasnikov, B. F., Xu,H., Bub-
ber, P., Pinto, J. T., Gibson, G. E., and Hanigan, M.H.
(2006) Cisplatin-induced toxicity is associated with plat-
inum deposition in mouse kidney mitochondria in vivo
and with selective inactivation of the alpha-ketogluta-
rate dehydrogenase complex in LLC-PK1 cells, Biochem-
istry, 45, 8959-8971, https://doi.org/10.1021/bi060027g.
97. Sukeda,N., Fujigaki, H., Ando,T., Ando, H., Yamamo-
to,Y., and Saito,K. (2023) Identification of 2′,4′,6′-trihy-
droxyacetophenone as promising cysteine conjugate
beta-lyase inhibitor for preventing cisplatin-induced
nephrotoxicity, Mol. Cancer Ther., 22, 873-881, https://
doi.org/10.1158/1535-7163.mct-22-0564.
98. Behar, K. L., Fitzpatrick, S. M., Hetherington, H. P.,
and Shulman, R.G. (1993) Cerebral metabolic studies
in vivo by combined 1H/31P and 1H/13C NMR spec-
troscopic methods, Acta Neurochir. Suppl., 57, 9-20,
https://doi.org/10.1007/978-3-7091-9266-5_2.
99. Vergara,F., Duffy, T.E., and Plum, F. (1973) Alpha-ke-
toglutaramate, a neurotoxic agent in hepatic coma,
Transact. Assoc. Am. Phys., 86, 255-263.