ZAMOTINA et al.1544
BIOCHEMISTRY (Moscow) Vol. 89 No. 9 2024
BAG3 is a modular, scaffolding protein that physical-
ly links heat shock protein 70 (Hsp70) to the small
heat shock proteins, J.Mol. Biol., 429, 128-141, https://
doi.org/10.1016/j.jmb.2016.11.013.
46. Sciandrone,B., Ami,D., D’Urzo,A., Angeli,E., Relini,A.,
Vanoni,M., Natalello,A., and Regonesi, M. E. (2023)
HspB8 interacts with BAG3 in a “native-like” con-
formation forming a complex that displays chaper-
one-like activity, Protein Sci., 32, e4687, https://doi.org/
10.1002/pro.4687.
47. Selcen, D., Muntoni, F., Burton, B. K., Pegoraro, E.,
Sewry,C., Bite, A.V., and Engel, A.G. (2009) Mutation
in BAG3 causes severe dominant childhood muscu-
lar dystrophy, Ann. Neurol., 65, 83-89, https://doi.org/
10.1002/ana.21553.
48. Meister-Broekema, M., Freilich, R., Jagadeesan, C.,
Rauch, J. N., Bengoechea, R., Motley, W. W., Kuiper,
E. F. E., Minoia, M., Furtado, G. V., van Waarde, M.,
Bird, S. J., Rebelo, A., Zuchner, S., Pytel, P., Scherer,
S.S., Morelli, F.F., Carra,S., Weihl, C.C., Bergink,S.,
Gestwicki, J. E., et al. (2018) Myopathy associated
BAG3 mutations lead to protein aggregation by stall-
ing Hsp70 networks, Nat. Commun., 9, 5342, https://
doi.org/10.1038/s41467-018-07718-5.
49. Adriaenssens, E., Tedesco, B., Mediani, L., Assel-
bergh,B., Crippa,V., Antoniani,F., Carra,S., Poletti,A.,
and Timmerman,V. (2020) BAG3 Pro209 mutants asso-
ciated with myopathy and neuropathy relocate chap-
erones of the CASA-complex to aggresomes, Sci. Rep.,
10, 8755, https://doi.org/10.1038/s41598-020-65664-z.
50. McClung, J.M., McCord, T.J., Ryan, T.E., Schmidt, C.A.,
Green, T.D., Southerland, K.W., Reinardy, J.L., Muel-
ler, S.B., Venkatraman, T.N., Lascola, C.D., Keum,S.,
Marchuk, D.A., Spangenburg, E.E., Dokun,A., Annex,
B. H., and Kontos, C. D. (2017) BAG3 (Bcl-2-associat-
ed athanogene-3) coding variant in mice determines
susceptibility to ischemic limb muscle myopathy by
directing autophagy, Circulation, 136, 281-296, https://
doi.org/10.1161/CIRCULATIONAHA.116.024873.
51. Kwok, A. S., Phadwal, K., Turner, B. J., Oliver, P. L.,
Raw, A., Simon, A. K., Talbot, K., and Agashe, V. R.
(2011) HspB8 mutation causing hereditary distal mo-
tor neuropathy impairs lysosomal delivery of auto-
phagosomes, J. Neurochem., 119, 1155-1161, https://
doi.org/10.1111/j.1471-4159.2011.07521.x.
52. Shemetov, A.A., and Gusev, N.B. (2011) Biochemical
characterization of small heat shock protein HspB8
(Hsp22)-Bag3 interaction, Arch. Biochem. Biophys.,
513, 1-9, https://doi.org/10.1016/j.abb.2011.06.014.
53. Carra,S., Boncoraglio,A., Kanon, B., Brunsting, J. F.,
Minoia,M., Rana,A., Vos, M.J., Seidel,K., Sibon, O.C.,
and Kampinga, H. H. (2010) Identification of the
Drosophila ortholog of HSPB8: implication of HSPB8
loss of function in protein folding diseases, J. Biol.
Chem., 285, 37811-37822, https://doi.org/10.1074/jbc.
M110.127498.
54. Tedesco,B., Vendredy,L., Adriaenssens,E., Cozzi,M.,
Asselbergh,B., Crippa, V., Cristofani, R., Rusmini, P.,
Ferrari, V., Casarotto, E., Chierichetti, M., Mina, F.,
Pramaggiore,P., Galbiati, M., Piccolella, M., Baets, J.,
Baeke,F., De Rycke,R., Mouly, V., Laurenzi,T., et al.
(2023) HSPB8 frameshift mutant aggregates weaken
chaperone-assisted selective autophagy in neuromy-
opathies, Autophagy, 19, 2217-2239, https://doi.org/10
.1080/15548627.2023.2179780.
55. Guilbert, S.M., Lambert,H., Rodrigue, M.A., Fuchs,M.,
Landry,J., and Lavoie, J.N. (2018) HSPB8 and BAG3
cooperate to promote spatial sequestration of ubiq-
uitinated proteins and coordinate the cellular adap-
tive response to proteasome insufficiency, FASEB J.,
32, 3518-3535, https://doi.org/10.1096/fj.201700558RR.
56. Fang, X., Bogomolovas, J., Wu, T., Zhang, W., Liu,C.,
Veevers, J., Stroud, M. J., Zhang, Z., Ma, X., Mu, Y.,
Lao, D.H., Dalton, N. D., Gu,Y., Wang,C., Wang,M.,
Liang,Y., Lange,S., Ouyang,K., etal. (2017) Loss-of-
function mutations in co-chaperone BAG3 destabilize
small HSPs and cause cardiomyopathy, J.Clin. Invest.,
127, 3189-3200, https://doi.org/10.1172/JCI94310.
57. Fang, X., Bogomolovas, J., Trexler, C., and Chen, J.
(2019) The BAG3-dependent and -independent roles
of cardiac small heat shock proteins, JCI Insight, 4,
e126464, https://doi.org/10.1172/jci.insight.126464.
58. Inomata,Y., Nagasaka,S., Miyate,K., Goto,Y., Hino,C.,
Toukairin, C., Higashio, R., Ishida, K., Saino, T.,
Hirose,M., Tsumura,H., and Sanbe,A. (2018) Bcl-2-as-
sociated athanogene 3 (BAG3) is an enhancer of small
heat shock protein turnover via activation of autoph-
agy in the heart, Biochem. Biophys. Res. Commun., 496,
1141-1147, https://doi.org/10.1016/j.bbrc.2018.01.158.
59. Lu, S. Z., Guo, Y.S., Liang, P. Z., Zhang, S.Z., Yin, S.,
Yin, Y.Q., Wang, X. M., Ding, F., Gu, X. S., and Zhou,
J.W. (2019) Suppression of astrocytic autophagy by al-
phaB-crystallin contributes to alpha-synuclein inclu-
sion formation, Translat. Neurodegener., 8, 3, https://
doi.org/10.1186/s40035-018-0143-7.
60. Carra, S., Seguin, S. J., Lambert, H., and Landry, J.
(2008) HspB8 chaperone activity toward poly(Q)-con-
taining proteins depends on its association with Bag3,
a stimulator of macroautophagy, J.Biol. Chem., 283,
1437-1444, https://doi.org/10.1074/jbc.M706304200.
61. Li,F., Xiao,H., Hu,Z., Zhou,F., and Yang,B. (2018) Ex-
ploring the multifaceted roles of heat shock protein
B8 (HSPB8) in diseases, Eur.J. Cell Biol., 97, 216-229,
https://doi.org/10.1016/j.ejcb.2018.03.003.
62. Cristofani,R., Crippa,V., Vezzoli,G., Rusmini,P., Gal-
biati,M., Cicardi, M.E., Meroni,M., Ferrari,V., Tedes-
co,B., Piccolella,M., Messi,E., Carra,S., and Poletti,A.
(2018) The small heat shock protein B8 (HSPB8) ef-
ficiently removes aggregating species of dipeptides
produced in C9ORF72-related neurodegenerative
diseases, Cell Stress Chaperones, 23, 1-12, https://
doi.org/10.1007/s12192-017-0806-9.