ULTRAFAST PROTEOMICS 1359
BIOCHEMISTRY (Moscow) Vol. 89 No. 8 2024
39. Kreimer, S., Belov, M.E., Danielson, W. F., Levitsky,
L.I., Gorshkov, M.V., Karger, B.L., and Ivanov, A.R.
(2016) Advanced precursor ion selection algorithms
for increased depth of bottom-up proteomic profiling,
J.Proteome Res., 15, 3563-3573, https://doi.org/10.1021/
acs.jproteome.6b00312.
40. Hebert, A.S., Thöing,C., Riley, N.M., Kwiecien, N.W.,
Shiskova, E., Huguet, R., Cardasis, H. L., Kuehn, A.,
Eliuk,S., Zabrouskov,V., Westphall, M. S., McAlister,
G.C., and Coon, J.J. (2018) Improved precursor char-
acterization for data-dependent mass spectrometry,
Anal. Chem., 90, 2333-2340, https://doi.org/10.1021/
acs.analchem.7b04808.
41. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N., and
Mann, M. (2014) Minimal, encapsulated proteom-
ic-sample processing applied to copy-number esti-
mation in eukaryotic cells, Nat. Methods, 11, 319-324,
https://doi.org/10.1038/nmeth.2834.
42. Zhang, B., Pirmoradian, M., Chernobrovkin, A., and
Zubarev, R. A. (2014) DeMix workflow for efficient
identification of cofragmented peptides in high res-
olution data-dependent tandem mass spectrom-
etry, Mol. Cell Proteomics, 13, 3211-3223, https://
doi.org/10.1074/mcp.o114.038877.
43. Angel, T.E., Aryal, U.K., Hengel, S.M., Baker, E.S., Kel-
ly, R.T., Robinson, E.W., and Smith, R.D. (2012) Mass
spectrometry-based proteomics: existing capabilities
and future directions, Chem. Soc. Rev., 41, 3912-3928,
https://doi.org/10.1039/c2cs15331a.
44. Stanley, J.R., Adkins, J.N., Slysz, G.W., Monroe, M.E.,
Purvine, S. O., Karpievitch, Y. V., Anderson, G. A.,
Smith, R. D., and Dabney, A. R. (2011) A statistical
method for assessing peptide identification confi-
dence in accurate mass and time tag proteomics,
Anal. Chem., 83, 6135-6140, https://doi.org/10.1021/
ac2009806.
45. Zimmer, J.S.D., Monroe, M.E., Qian, W.-J., and Smith,
R. D. (2006) Advances in proteomics data analysis
and display using an accurate mass and time tag
approach, Mass Spectrom. Rev., 25, 450-482, https://
doi.org/10.1002/mas.20071.
46. Dos Santos,A., Court,M., Thiers,V., Sar,S., Guettier,C.,
Samuel, D., Bréchot, C., Garin, J., Demaugre, F., and
Masselon, C.D. (2010) Identification of cellular targets
in human intrahepatic cholangiocarcinoma using la-
ser microdissection and accurate mass and time tag
proteomics, Mol. Cell Proteomics, 9, 1991-2004, https://
doi.org/10.1074/mcp.m110.000026.
47. Agron, I.A., Avtonomov, D.M., Kononikhin, A.S., Pop-
ov, I.A., Moshkovskii, S.A., and Nikolaev, E.N. (2010)
Accurate mass tag retention time database for urine
proteome analysis by chromatography-mass spec-
trometry, Biochemistry (Moscow), 75, 636-641, https://
doi.org/10.1134/s0006297910050147.
48. Heil, L.R., Damoc,E., Arrey, T.N., Pashkova,A., Den-
isov,E., Petzoldt,J., Peterson, A.C., Hsu,C., Searle, B.C.,
Shulman,N., Riffle,M., Connolly,B., MacLean, B.X.,
Remes, P. M., Senko, M. W., Stewart, H. I., Hock, C.,
Makarov, A.A., Hermanson,D., Zabrouskov, V., Wu,
C. C., and MacCoss, M. J. (2023) Evaluating the per-
formance of the astral mass analyzer for quantita-
tive proteomics using data-independent acquisition,
J.Proteome Res., 22, 3290-3300, https://doi.org/10.1021/
acs.jproteome.3c00357.
49. Guzman, U. H., Martinez-Val, A., Ye, Z., Damoc, E.,
Arrey, T.N., Pashkova,A., Renuse,S., Denisov,E., Pet-
zoldt, J., Peterson, A. C., Harking, F., Østergaard, O.,
Rydbirk, R., Aznar, S., Stewart, H., Xuan, Y., Her-
manson, D., Horning, S., Hock, C., Makarov, A.,
Zabrouskov,V., and Olsen, J.V. (2024) Ultra-fast label-
free quantification and comprehensive proteome cov-
erage with narrow-window data-independent acqui-
sition, Nat. Biotechnol., https://doi.org/10.1038/s41587-
023-02099-7.
50. Gillet, L.C., Navarro,P., Tate,S., Röst,H., Selevsek,N.,
Reiter,L., Bonner,R., and Aebersold,R. (2012) Target-
ed data extraction of the MS/MS spectra generated
by data-independent acquisition: a new concept for
consistent and accurate proteome analysis, Mol. Cell
Proteomics, 11, O111.016717, https://doi.org/10.1074/
mcp.o111.016717.
51. Bruderer,R., Bernhardt, O.M., Gandhi,T., Miladinović,
S.M., Cheng, L.Y., Messner,S., Ehrenberger,T., Zano-
telli,V., Butscheid,Y., Escher,C., Vitek,O., Rinner,O.,
and Reiter, L. (2015) Extending the limits of quanti-
tative proteome profiling with data-independent ac-
quisition and application to acetaminophen-treat-
ed three-dimensional liver microtissues, Mol. Cell
Proteomics, 14, 1400-1410, https://doi.org/10.1074/
mcp.m114.044305.
52. Kelstrup, C. D., Bekker-Jensen, D. B., Arrey, T. N.,
Hogrebe, A., Harder, A., and Olsen, J. V. (2018) Per-
formance evaluation of the Q Exactive HF-X for shot-
gun proteomics, J.Proteome Res., 17, 727-738, https://
doi.org/10.1021/acs.jproteome.7b00602.
53. Doellinger, J., Blumenscheit, C., Schneider, A., and
Lasch, P. (2020) Isolation window optimization of
data-independent acquisition using predicted li-
braries for deep and accurate proteome profiling,
Anal. Chem., 92, 12185-12192, https://doi.org/10.1021/
acs.analchem.0c00994.
54. Doellinger, J., Blumenscheit, C., Schneider, A., and
Lasch, P. (2023) Increasing proteome depth while
maintaining quantitative precision in short-gradi-
ent data-independent acquisition proteomics, J. Pro-
teome Res., 22, 2131-2140, https://doi.org/10.1021/acs.
jproteome.3c00078.
55. Bekker-Jensen, D.B., Martínez-Val,A., Steigerwald,S.,
Rüther, P., Fort, K. L., Arrey, T. N., Harder, A., Ma-
karov, A., and Olsen, J. V. (2020) A compact quad-
rupole-orbitrap mass spectrometer with FAIMS in-
terface improves proteome coverage in short LC