IRREDUCIBLE COMPLEXITY OF HOX GENE 999
BIOCHEMISTRY (Moscow) Vol. 89 No. 6 2024
50. Gehring, W. J., and Ikeo, K. (1999) Pax 6: mastering
eye morphogenesis and eye evolution, Trends Genet.,
15, 371-377, doi:10.1016/s0168-9525(99)01776-x.
51. Gehring, W.J. (2005) New perspectives on eye devel-
opment and the evolution of eyes and photorecep-
tors, J.Hered., 96, 171-184, doi:10.1093/jhered/esi027.
52. Merabet,S., and Mann, R.S. (2016) To be specific or
not: the critical relationship between Hox and TALE
proteins, Trends Genet., 32, 334-347, doi:10.1016/j.tig.
2016.03.004.
53. Hejnol,A., and Martindale, M.Q. (2009) Coordinated
spatial and temporal expression of Hox genes during
embryogenesis in the acoel Convolutriloba longifis-
sura, BMC Biol., 7, 65, doi:10.1186/1741-7007-7-65.
54. Moreno, E., Nadal, M., Baguñà, J., and Martínez, P.
(2009) Tracking the origins of the bilaterian Hox
patterning system: insights from the acoel flatworm
Symsagittifera roscoffensis, Evol. Dev., 11, 574-581,
doi:10.1111/j.1525-142X.2009.00363.x.
55. Moreno,E., De Mulder,K., Salvenmoser,W., Ladurn-
er,P., and Martínez,P. (2010) Inferring the ancestral
function of the posterior Hox gene within the bila-
teria: controlling the maintenance of reproductive
structures, the musculature and the nervous system
in the acoel flatworm Isodiametra pulchra, Evol. Dev.,
12, 258-266, doi:10.1111/j.1525-142X.2010.00411.x.
56. Moreno, E., Permanyer, J., and Martinez, P. (2011)
The origin of patterning systems in bilateria-insights
from the Hox and ParaHox genes in Acoelomorpha,
Genom. Proteom. Bioinform., 9, 65-76, doi: 10.1016/
s1672-0229(11)60010-7.
57. Finnerty, J. R., and Martindale, M.Q. (1999) Ancient
origins of axial patterning genes: Hox genes and
ParaHox genes in the Cnidaria, Evol. Dev., 1, 16-23,
doi:10.1046/j.1525-142x.1999.99010.x.
58. Chiori, R., Jager, M., Denker, E., Wincker, P., Da Sil-
va,C., Le Guyader,H., Manuel,M., and Quéinnec, E.
(2009) Are Hox genes ancestrally involved in axial
patterning? Evidence from the hydrozoan Clytia hemi-
sphaerica (Cnidaria), PLoS One, 4, e4231, doi:10.1371/
journal.pone.0004231.
59. Nong,W., Cao,J., Li,Y., Qu,Z., Sun,J., Swale,T., Yip,
H.Y., Qian, P.Y., Qiu, J.W., Kwan, H.S., Bendena,W.,
Tobe,S., Chan, T.F., Yip, K.Y., Chu, K.H., Ngai, S.M.,
Tsim, K.Y., Holland, P.W.H., and Hui, J.H.L. (2020)
Jellyfish genomes reveal distinct homeobox gene clus-
ters and conservation of small RNA processing, Nat.
Commun., 11, 3051, doi:10.1038/s41467-020-16801-9.
60. Galliot, B., Quiquand, M., Ghila, L., de Rosa, R., Mil-
jkovic-Licina, M., and Chera, S. (2009) Origins of
neurogenesis, a cnidarian view, Dev. Biol., 332, 2-24,
doi:10.1016/j.ydbio.2009.05.563.
61. Faltine-Gonzalez, D., Havrilak, J., and Layden, M. J.
(2023) The brain regulatory program predates cen-
tral nervous system evolution, Sci. Rep., 13, 8626,
doi:10.1038/s41598-023-35721-4.
62. Oren, M., Brickner, I., Appelbaum, L., and Levy, O.
(2014) Fast neurotransmission related genes are ex-
pressed in non nervous endoderm in the sea anem-
one Nematostella vectensis, PLoS One, 9, e93832,
doi:10.1371/journal.pone.0093832.
63. Steinworth, B. M., Martindale, M. Q., and Ryan, J. F.
(2023) Gene Loss may have shaped the Cnidarian and
Bilaterian Hox and ParaHox complement, Genome
Biol. Evol., 15, evac172, doi:10.1093/gbe/evac172.
64. Reggiori, F., and Klionsky, D. J. (2002) Autopha-
gy in the eukaryotic cell, Eukaryot. Cell, 1, 11-21,
doi:10.1128/ec.01.1.11-21.2002.
65. Wada, Y., Sun-Wada, G. H., Kawamura, N., and Aoy-
ama, M. (2014) Role of autophagy in embryogene-
sis, Curr. Opin. Genet. Dev., 27, 60-66, doi: 10.1016/
j.gde.2014.03.010.
66. Tsukamoto,S., Kuma,A., and Mizushima,N. (2008) The
role of autophagy during the oocyte-to-embryo transi-
tion, Autophagy, 4, 1076-1078, doi:10.4161/auto.7065.
67. Banreti,A., Hudry,B., Sass,M., Saurin, A.J., and Gra-
ba, Y. (2014) Hox proteins mediate developmental
and environmental control of autophagy, Dev. Cell,
28, 56-69, doi:10.1016/j.devcel.2013.11.024.
68. Sachs, M., Onodera, C., Blaschke, K., Ebata, K. T.,
Song, J. S., and Ramalho-Santos, M. (2013) Bivalent
chromatin marks developmental regulatory genes in
the mouse embryonic germline in vivo, Cell Rep., 3,
1777-1784, doi:10.1016/j.celrep.2013.04.032.
69. Paul, D., Bridoux, L., Rezsöhazy, R., and Donnay, I.
(2011) HOX genes are expressed in bovine and mouse
oocytes and early embryos, Mol. Reprod. Dev., 78,
436-449, doi:10.1002/mrd.21321.
70. Kondo,M., Yamamoto,T., Takahashi,S., and Taira,M.
(2017) Comprehensive analyses of hox gene expres-
sion in Xenopus laevis embryos and adult tissues, Dev.
Growth Differ., 59, 526-539, doi:10.1111/dgd.12382.
71. Maslakov, G.P., Kulishkin, N. S., Surkova, A.A., and
Kulakova, M. A. (2021) Maternal transcripts of Hox
genes are found in oocytes of Platynereis dumerilii
(Annelida, Nereididae), J.Dev. Biol., 9, 37, doi:10.3390/
jdb9030037.
72. Chipman, A.D., Ferrier, D.E., Brena,C., Qu,J., Hughes,
D.S., Schröder,R., Torres-Oliva,M., Znassi,N., Jiang,H.,
Almeida, F.C., Alonso, C.R., Apostolou,Z., Aqrawi,P.,
Arthur,W., Barna, J.C., Blankenburg, K.P., Brites,D.,
Capella-Gutiérrez,S., Coyle,M., Dearden, P. K., etal.
(2014) The first myriapod genome sequence reveals
conservative arthropod gene content and genome or-
ganisation in the centipede Strigamia maritima, PLoS
Biol., 12, e1002005, doi:10.1371/journal.pbio.1002005.
73. Qu, Z., Nong, W., So, W. L., Barton-Owen, T., Li, Y.,
Leung, T.C.N., Li,C., Baril,T., Wong, A.Y.P., Swale,T.,
Chan, T.F., Hayward,A., Ngai, S.M., and Hui, J.H.L.
(2020) Millipede genomes reveal unique adaptations
during myriapod evolution, PLoS Biol., 18, e3000636,
doi:10.1371/journal.pbio.3000636.