ROGOVAYA et al.956
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
11. Mathew-Steiner, S. S., Roy, S., and Sen, C. K. (2021)
Collagen in wound healing, Bioengineering, 8, 63,
doi:10.3390/bioengineering8050063.
12. Zhang, Y., Wang, Y., Li, Y., Yang, Y., Jin, M., Lin, X.,
Zhuang,Z., Guo,K., Zhang,T., and Tan,W. (2023) Ap-
plication of collagen-based hydrogel in skin wound
healing, Gels, 9, 185, doi:10.3390/gels9030185.
13. Potter, D.A., Veitch,D., and Johnston, G.A. (2019) Scar-
ring and wound healing, Br.J. Hosp. Med. Lond. Engl.,
80, C166-C171, doi:10.12968/hmed.2019.80.11.C166.
14. Chen, K., Liu, Y., Liu, X., Guo, Y., Liu, J., Ding, J.,
Zhang, Z., Ni, X., and Chen, Y. (2023) Hyaluronic ac-
id-modified and verteporfin-loaded polylactic acid
nanogels promote scarless wound healing by acceler-
ating wound re-epithelialization and controlling scar
formation, J. Nanobiotechnol., 21, 241, doi: 10.1186/
s12951-023-02014-x.
15. Wei, C., You, C., Zhou, L., Liu, H., Zhou, S., Wang, X.,
and Guo,R. (2023) Antimicrobial hydrogel micronee-
dle loading verteporfin promotes skin regeneration
by blocking mechanotransduction signaling, Chem.
Eng.J., 472, 144866, doi:10.1016/j.cej.2023.144866.
16. Zhang, C., Yang, D., Wang, T.-B., Nie, X., Chen, G.,
Wang, L.-H., You, Y.-Z., and Wang, Q. (2022) Biode-
gradable hydrogels with photodynamic antibacteri-
al activity promote wound healing and mitigate scar
formation, Biomater. Sci., 11, 288-297, doi: 10.1039/
D2BM01493A.
17. Zhang,Y., Wang,S., Yang,Y., Zhao,S., You,J., Wang,J.,
Cai, J., Wang, H., Wang, J., Zhang, W., Yu, J., Han, C.,
Zhang, Y., and Gu, Z. (2023) Scarless wound healing
programmed by core-shell microneedles, Nat. Com-
mun., 14, 3431, doi:10.1038/s41467-023-39129-6.
18. Mascharak,S., Talbott, H.E., Januszyk,M., Griffin,M.,
Chen,K., Davitt, M.F., Demeter,J., Henn,D., Bonham,
C. A., Foster, D. S., Mooney, N., Cheng, R., Jackson,
P. K., Wan, D. C., Gurtner, G. C., and Longaker, M. T.
(2022) Multi-Omic analysis reveals divergent mo-
lecular events in scarring and regenerative wound
healing, Cell Stem Cell, 29, 315-327.e6, doi: 10.1016/
j.stem.2021.12.011.
19. Lee, M.-J., Byun, M.R., Furutani-Seiki,M., Hong, J.-H.,
and Jung, H.-S. (2014) YAP and TAZ regulate skin
wound healing, J. Invest. Dermatol., 134, 518-525,
doi:10.1038/jid.2013.339.
20. Mascharak, S., desJardins-Park, H. E., Davitt, M. F.,
Griffin, M., Borrelli, M. R., Moore, A. L., Chen, K.,
Duoto,B., Chinta, M., Foster, D. S., Shen, A.H., Janus-
zyk, M., Kwon, S. H., Wernig, G., Wan, D. C., Lorenz,
H.P., Gurtner, G.C., and Longaker, M.T. (2021) Prevent-
ing engrailed-1 activation in fibroblasts yields wound
regeneration without scarring, Science, 372, eaba2374,
doi:10.1126/science.aba2374.
21. International Guiding Principles for Biomedical Re-
search Involving Animals (1985) In The Development
of Science-based Guidelines for Laboratory Animal
Care: Proceedings of the November 2003 International
Workshop; National Academies Press (US), 2004.
22. European Convention for the Protection of Vertebrate
Animals Used for Experimental and Other Scientific
Purposes, URL: https://www.ecolex.org/details/treaty/
european-convention-for-the-protection-of-vertebrate-
animals-used-for-experimental-and-other-scientific-
purposes-tre-001042/.
23. Bredfeldt, J.S., Liu,Y., Pehlke, C.A., Conklin, M.W., Szu-
lczewski, J.M., Inman, D.R., Keely, P.J., Nowak, R.D.,
Mackie, T.R., and Eliceiri, K.W. (2014) Computational
segmentation of collagen fibers from second-harmon-
ic generation images of breast cancer, J.Biomed. Opt.,
19, 16007, doi:10.1117/1.JBO.19.1.016007.
24. Liu,Y., Keikhosravi,A., Mehta, G.S., Drifka, C.R., and
Eliceiri, K.W. (2017) Methods for quantifying fibrillar
collagen alignment, Methods Mol. Biol.
, 1627, 429-451,
doi:10.1007/978-1-4939-7113-8_28.
25. Mussbacher, M., Salzmann, M., Brostjan, C., Hoe-
sel,B., Schoergenhofer,C., Datler,H., Hohensinner,P.,
Basílio, J., Petzelbauer, P., Assinger, A., and Schmid,
J.A. (2019) Cell type-specific roles of NF-κB linking in-
flammation and thrombosis, Front. Immunol., 10, 85,
doi:10.3389/fimmu.2019.00085.
26. Wnuk, D., Lasota, S., Paw, M., Madeja, Z., and Mi-
chalik, M. (2020) Asthma-derived fibroblast to my-
ofibroblast transition is enhanced in comparison
to fibroblasts derived from non-asthmatic patients
in 3D in vitro culture due to Smad2/3 signalling,
Acta Biochim. Pol., 67, 441-448, doi: 10.18388/abp.
2020_5412.
27. Shin, D., and Minn, K. W. (2004) The effect of myofi-
broblast on contracture of hypertrophic scar, Plast.
Reconstr. Surg., 113, 633-640, doi: 10.1097/01.PRS.
0000101530.33096.5B.
28. Wang, C., Zhu,X., Feng,W., Yu, Y., Jeong, K., Guo,W.,
Lu,Y., and Mills, G.B. (2016) Verteporfin inhibits YAP
function through Up-regulating 14-3-3σ sequestering
YAP in the cytoplasm, Am.J. Cancer Res., 6, 27-37.
29. Shi-wen,X., Racanelli,M., Ali,A., Simon,A., Quesnel,K.,
Stratton, R.J., and Leask,A. (2021) Verteporfin inhibits
the persistent fibrotic phenotype of lesional sclero-
derma dermal fibroblasts, J.Cell Commun. Signal., 15,
71-80, doi:10.1007/s12079-020-00596-x.
30. El Ayadi, A., Jay, J. W., and Prasai, A. (2020) Current
approaches targeting the wound healing phases to at-
tenuate fibrosis and scarring, Int.J. Mol. Sci., 21, 1105,
doi:10.3390/ijms21031105.
31. Zlobina, K., Malekos, E., Chen, H., and Gomez, M.
(2023) Robust classification of wound healing stages
in both mice and humans for acute and burn wounds
based on transcriptomic data, BMC Bioinformatics,
24, 166, doi:10.1186/s12859-023-05295-z.
32. Galiano, R. D., Michaels, J., Dobryansky, M., Levine,
J.P., and Gurtner, G.C. (2004) Quantitative and repro-
ducible murine model of excisional wound healing,