TILLIB, GORYAINOVA940
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
E. S., Lysenko, A. A., Shmarov, M. M., Logunov, D. Y.,
Naroditsky, B.S., and Gintsburg, A. L. (2013) Format-
ted single-domain antibodies can protect mice against
infection with influenza virus (H5N2), Antiviral Res.,
97, 245-254, doi:10.1016/j.antiviral.2012.12.014.
9. Huet, H.A., Growney, J.D., Johnson, J.A., Li,J., Bilic,S.,
Ostrom, L., Zafari, M., Kowal, C., Yang, G., Royo, A.,
et al. (2014) Multivalent nanobodies targeting death
receptor 5 elicit superior tumor cell killing through
efficient caspase induction, mAbs, 6, 1560-1570,
doi:10.4161/19420862.2014.975099.
10. Laursen, N. S., Friesen, R. H. E., Zhu, X., Jongeneel-
en, M., Blokland, S., Vermond, J., van Eijgen, A.,
Tang,C., van Diepen,H., Obmolova,G., van der Neut
Kolfschoten,M., Zuijdgeest,D., Straetemans,R., Hoff-
man, R.M.B., Nieusma,T., Pallesen,J., Turner, H.L.,
Bernard, S.M., Ward, A.B., Luo,J., Poon, L.L.M., Tre-
tiakova, A.P., Wilson, J.M., Limberis, M.P., Vogels,R.,
Brandenburg, B., Kolkman, J. A., and Wilson, I. A.
(2018) Universal protection against influenza infec-
tion by a multidomain antibody to influenza hemag-
glutinin, Science, 362, 598-602, doi: 10.1126/science.
aaq0620.
11. Efimov, G. A., Kruglov, A. A., Khlopchatnikova, Z. V.,
Rozov, F.N., Mokhonov, V.V., Rose-John,S., Scheller,J.,
Gordon, S., Stacey, M., Drutskaya, M. S., Tillib, S. V.,
and Nedospasov, S.A. (2016) Cell-type-restricted anti-
cytokine therapy: TNF inhibition from one pathogen-
ic source, Proc. Natl. Acad. Sci. USA, 113, 3006-3011,
doi:10.1073/pnas.1520175113.
12. Hanke,L., Das,H., Sheward, D.J., Perez Vidakovics,L.,
Urgard, E., Moliner-Morro, A., Kim, C., Karl, V., Pan-
kow,A., Smith, N. L., Porebski, B., Fernandez-Capetil-
lo, O., Sezgin, E., Pedersen, G. K., Coquet, J. M., Häll-
berg, B. M., Murrell, B., and McInerney, G. M. (2022)
A bispecific monomeric nanobody induces spike tri-
mer dimers and neutralizes SARS-CoV-2 in vivo, Nat.
Commun., 13, 155, doi:10.1038/s41467-021-27610-z.
13. Liu, Y., Ao, K., Bao, F., Cheng, Y., Hao, Y., Zhang, H.,
Fu, S., Xu, J., and Wu, Q. (2022) Development of a
bispecific nanobody targeting CD20 on B-cell lympho-
ma cells and CD3 on T cells, Vaccines (Basel), 10, 1335,
doi:10.3390/vaccines10081335.
14. Ma,H., Zhang,X., Zeng,W., Zhou,J., Chi,X., Chen, S.,
Zheng,P., Wang,M., Wu,Y., Zhao,D., Gong,F., Lin,H.,
Sun, H., Yu, C., Shi, Z., Hu, X., Zhang, H., Jin, T., and
Chiu, S.A. (2022) A bispecific nanobody dimer broad-
ly neutralizes SARS-CoV-1 & 2 variants of concern and
offers substantial protection against Omicron via low-
dose intranasal administration, Cell Discov., 8, 132,
doi:10.1038/s41421-022-00497-w.
15. De Marco, A. (2015) Recombinant antibody produc-
tion evolves into multiple options aimed at yield-
ing reagents suitable for application-specific needs,
Microb. Cell Factories, 14, 125, doi: 10.1186/s12934-
015-0320-7.
16. Sandomenico,A., Sivaccumar, J.P., and Ruvo,M. (2020)
Evolution of Escherichia coli expression system in pro-
ducing antibody recombinant fragments, Int. J. Mol.
Sci., 21, 6324, doi:10.3390/ijms21176324.
17. Huleani, S., Roberts, M. R., Beales, L., and Papaioan-
nou, E. H. (2022) Escherichia coli as an antibody ex-
pression host for the production of diagnostic pro-
teins: significance and expression, Crit. Rev. Biotech-
nol., 42, 756-753, doi:10.1080/07388551.2021.1967871.
18. Skerra, A., and Plückthun, A. (1988) Assembly of a
functional immunoglobulin Fv fragment in Esch-
erichia coli, Science, 240, 1038-1041, doi: 10.1126/
science.3285470.
19. Le Gall, F., Reusch, U., Little, M., and Kipriyanov,
S. M. (2004) Effect of linker sequences between the
antibody variable domains on the formation, stabil-
ity and biological activity of a bispecific tandem dia-
body, Protein Eng. Des. Sel.,
17, 357-366, doi:10.1093/
protein/gzh039.
20. Wang, Q., Chen, Y., Park, J., Liu, X., Hu, Y., Wang, T.,
McFarland, K., and Betenbaugh, M. J. (2019) Design
and production of bispecific antibodies, Antibodies
(Basel), 8, 43, doi:10.3390/antib8030043.
21. Huang, C., Huang, J., Zhu, S., Tang, T., Chen, Y., and
Qian, F. (2023) Multivalent nanobodies with ratio-
nally optimized linker and valency for intravitreal
VEGF neutralization, Chem. Eng. Sci., 270, 118521,
doi:10.1016/j.ces.2023.118521.
22. Roobrouck, A., and Stortelers, C. (2015) Bispecific na-
nobodies. Applicant – ABLYNX NV (Belgium). WIPO/
PCT patent publication number WO2015044386 A1.
Publication date April 2, 2015.
23. Zettl, I., Ivanova, T., Zghaebi, M., Rutovskaya, M. V.,
Ellinger, I., Goryainova, O., Kollárová, J., Villazala-
Merino, S., Lupinek, C., Weichwald, C., Drescher, A.,
Eckl-Dorna,J., Tillib, S.V., and Flicker, S. (2022) Gen-
eration of high affinity ICAM-1-specific nanobodies
and evaluation of their suitability for allergy treat-
ment, Front. Immunol., 13, 1022418, doi: 10.3389/
fimmu.2022.1022418.
24. Zettl, I., Ivanova, T., Strobl, M. R., Weichwald, C., Go-
ryainova, O., Khan, E., Rutovskaya, M. V., Focke-
Tejkl,M., Drescher,A., Bohle,B., Flicker,S., and Tillib,
S. V. (2022) Isolation of nanobodies with potential to
reduce patients’ IgE binding to Bet v 1, Allergy, 77,
1751-1760, doi:10.1111/all.15191.
25. Goryainova, O. S., Ivanova, T. I., Rutovskaya, M. V.,
and Tillib, S. V. (2017) A method for the parallel and
sequential generation of single-domain antibodies
for the proteomic analysis of human blood plas-
ma, Mol. Biol. (Mosk.)., 51, 985-996, doi: 10.7868/
S0026898417060106.
26. Conrath, K.E., Lauwereys,M., Galleni,M., Matagne,A.,
Frère, J.M., Kinne,J., Wyns,L., and Muyldermans,S.
(2001) Beta-lactamase in-hibitors derived from
single-domain antibody fragments elicited in the