LYMPHOID NEOPLASIA 901
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
22. Okrój,M., and Potempa,J. (2019) Complement activa-
tion as a helping hand for inflammophilic pathogens
and cancer, Front. Immunol., 9, 3125, doi: 10.3389/
fimmu.2018.03125.
23. Lund, F. E. (2008) Cytokine-producing B lympho-
cytes-key regulators of immunity, Curr. Opin. Immu-
nol., 20, 332-338, doi:10.1016/j.coi.2008.03.003.
24. Munir, H., Ward, L. S. C., and McGettrick, H. M.
(2018) Mesenchymal stem cells as endogenous reg-
ulators of inflammation, Adv. Exp. Med. Biol., 1060,
73-98, doi:10.1007/978-3-319-78127-3_5.
25. Schmittgen, T.D., and Livak, K.J. (2008) Analyzing re-
al-time PCR data by the comparative CT method, Nat.
Protocols, 3, 1101-1108, doi:10.1038/nprot.2008.73.
26. Kumar, L. P., Kandoi, S., Misra, R., and Verma, R. S.
(2019) The mesenchymal stem cell secretome: a new
paradigm towards cell-free therapeutic mode in re-
generative medicine, Cytokine Growth Factor Rev.,
46, 1-9, doi:10.1016/j.cytogfr.2019.04.002.
27. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Corten-
bach, I., Marini, F., Krause,D., Deans,R., Keating,A.,
Prockop, D., and Horwitz, E. (2006) Minimal crite-
ria for defining multipotent mesenchymal stromal
cells. The international society for cellular ther-
apy position statement, Cytotherapy, 8, 315-317,
doi:10.1080/14653240600855905.
28. Vanegas, N.-D. P., Ruiz-Aparicio, P. F., Uribe, G. I., Li-
nares-Ballesteros, A., and Vernot, J.-P. (2021) Leu-
kemia-Induced cellular senescence and stemness
alterations in mesenchymal stem cells are revers-
ible upon withdrawal of B-cell acute lymphoblastic
leukemia cells, Int.J. Mol. Sci., 22, 8166, doi:10.3390/
ijms22158166.
29. Schroeder, T., Geyh, S., Germing, U., and Haas, R.
(2016) Mesenchymal stromal cells in myeloid malig-
nancies, Blood Res., 51, 225-232, doi:10.5045/br.2016.
51.4.225.
30. Passaro, D., Di Tullio, A., Abarrategi, A., Rouault-
Pierre, K., Foster, K., Ariza-McNaughton, L., Montan-
er,B., Chakravarty,P., Bhaw,L., Diana,G., Lassailly,F.,
Gribben,J., and Bonnet,D. (2017) Increased vascular
permeability in the bone marrow microenvironment
contributes to disease progression and drug response
in acute myeloid leukemia, Cancer Cell, 32, 324-341.
e6, doi:10.1016/J.CCELL.2017.08.001.
31. Shipounova, I. N., Petinati, N. A., Bigildeev, A. E.,
Drize, N.J., Sorokina, T.V., Kuzmina, L.A., Parovich-
nikova, E.N., and Savchenko, V.G. (2017) Alterations
of the bone marrow stromal microenvironment
in adult patients with acute myeloid and lympho-
blastic leukemias before and after allogeneic he-
matopoietic stem cell transplantation, Leuk. Lym-
phoma, 58, 408-417, doi: 10.1080/10428194.2016.
1187277.
32. Ludin, A., Gur-Cohen, S., Golan, K., Kaufmann, K. B.,
Itkin,T., Medaglia,C., Lu, X.-J., Ledergor,G., Kollet,O.,
and Lapidot, T. (2014) Reactive oxygen species regu-
late hematopoietic stem cell self-renewal, migration
and development, as well as their bone marrow mi-
croenvironment, Antioxid. Redox Signal., 21, 1605-
1619, doi:10.1089/ars.2014.5941.
33. Récher,C. (2021) Clinical implications of inflammation
in acute myeloid leukemia, Front. Oncol., 11, 623952,
doi:10.3389/fonc.2021.623952.
34. Beavis, P. A., Stagg, J., Darcy, P. K., and Smyth, M. J.
(2012) CD73: a potent suppressor of antitumor im-
mune responses, Trends Immunol., 33, 231-237,
doi:10.1016/j.it.2012.02.009.
35. Jin,D., Fan,J., Wang,L., Thompson, L.F., Liu,A., Dan-
iel, B.J., Shin,T., Curiel, T.J., and Zhang,B. (2010) CD73
on tumor cells impairs antitumor T-cell responses:
a novel mechanism of tumor-induced immune sup-
pression, Cancer Res., 70, 2245-2255, doi: 10.1158/
0008-5472.CAN-09-3109.
36. Petruk, N., Tuominen, S., Åkerfelt, M., Mattsson, J.,
Sandholm, J., Nees, M., Yegutkin, G. G., Jukkola, A.,
Tuomela, J., and Selander, K. S. (2021) CD73 Facili-
tates EMT Progression and Promotes Lung Metastases
in Triple-Negative Breast Cancer, Sci. Rep., 11, 6035,
doi:10.1038/S41598-021-85379-Z.
37. Bui, T. M., Wiesolek, H. L., and Sumagin, R. (2020)
ICAM-1: a master regulator of cellular respons-
es in inflammation, injury resolution, and tumori-
genesis, J. Leukoc. Biol., 108, 787-799, doi: 10.1002/
JLB.2MR0220-549R.
38. Ren, G., Zhao, X., Zhang, L., Zhang, J., L’Huillier, A.,
Ling,W., Roberts, A.I., Le, A.D., Shi,S., Shao,C., and
Shi, Y. (2010) Inflammatory cytokine-induced inter-
cellular adhesion molecule-1 and vascular cell adhe-
sion molecule-1 in mesenchymal stem cells are critical
for immunosuppression, J.Immunol., 184, 2321-2328,
doi:10.4049/jimmunol.0902023.
39. Russell, K.C., Phinney, D.G., Lacey, M.R., Barrilleaux,
B. L., Meyertholen, K. E., and O’Connor, K. C. (2010)
In vitro high-capacity assay to quantify the clonal
heterogeneity in trilineage potential of mesenchy-
mal stem cells reveals a complex hierarchy of lineage
commitment, Stem Cells, 28, 788-798, doi: 10.1002/
stem.312.
40. Schirrmacher,V. (2019) From chemotherapy to biolog-
ical therapy: a review of novel concepts to reduce the
side effects of systemic cancer treatment, Int.J. Oncol.,
54, 407-419, doi:10.3892/ijo.2018.4661.
41. Borges,L., Oliveira, V.K.P., Baik,J., Bendall, S.C., and
Perlingeiro, R. C. R. (2019) Serial transplantation re-
veals a critical role for endoglin in hematopoietic
stem cell quiescence, Blood, 133, 688-696, doi:10.1182/
blood-2018-09-874677.
42. Portale,F., Cricrì,G., Bresolin,S., Lupi,M., Gaspari,S.,
Silvestri,D., Russo,B., Marino,N., Ubezio,P., Pagni,F.,
Vergani, P., Te Kronnie, G., Valsecchi, M. G., Locatel-
li,F., Rizzari,C., Biondi,A., Dander,E., and D’Amico,G.