ANTIGENIC CARTOGRAPHY OF SARS-CoV-2 869
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
Hatziioannou, T., and Bieniasz, P. D. (2020) Measur-
ing SARS-CoV-2 neutralizing antibody activity using
pseudotyped and chimeric viruses, J. Exp. Med., 217,
e20201181, doi:10.1084/jem.20201181.
11. Saeys,Y., Van Gassen,S., and Lambrecht, B.N. (2016)
Computational flow cytometry: Helping to make sense
of high-dimensional immunology data, Nat. Rev. Im-
munol., 16, 449-462, doi:10.1038/nri.2016.56.
12. Dorrity, M.W., Saunders, L.M., Queitsch,C., Fields,S.,
and Trapnell, C. (2020) Dimensionality reduction
by UMAP to visualize physical and genetic interac-
tions, Nat. Commun., 11, 1537, doi: 10.1038/s41467-
020-15351-4.
13. Becht,E., McInnes,L., Healy,J., Dutertre, C.A., Kwok,
I. W. H., Ng, L. G., Ginhoux, F., and Newell, E. W.
(2019) Dimensionality reduction for visualizing sin-
gle-cell data using UMAP, Nat. Biotechnol., 37, 38-47,
doi:10.1038/nbt.4314.
14. Van der Maaten,L., and Hinton,G. (2008) Visualizing
data using t-SNE, J.Mach. Learn. Res., 9, 2579-2605.
15. Mcinnes, L., Healy, J., and Melville, J. (2021) UMAP:
Uniform Manifold Approximation and Projec-
tion for dimension reduction, arXiv, doi: 10.48550/
arXiv.1802.03426.
16. Cai, Z., Zhang, T., and Wan, X. (2012) Antigenic dis-
tance measurements for seasonal influenza vac-
cine selection, Vaccine, 30, 448-453, doi: 10.1016/
j.vaccine.2011.10.051.
17. Amanat,F., Strohmeier,S., Meade,P., Dambrauskas,N.,
Mühlemann, B., Smith, D. J., Vigdorovich, V., Noah
Sather, D., Coughlan,L., and Krammer, F. (2021) Vac-
cination with SARS-CoV-2 variants of concern protects
mice from challenge with wild-type virus, PLoS Biol.,
19, e3001384, doi:10.1371/journal.pbio.3001384.
18. Mykytyn, A. Z., Rissmann, M., Kok, A., Rosu, M. E.,
Schipper,D., Breugem, T.I., van den Doel, P.B., Chan-
dler, F., Bestebroer, T., de Wit, M., van Royen, M. E.,
Molenkamp,R., Oude Munnink, B. B., de Vries, R.D.,
GeurtsvanKessel,C., Smith, D.J., Koopmans, M.P. G.,
Rockx,B., Lamers, M.M., Fouchier, R.A.M., and Haag-
mans, B. L. (2022) Antigenic cartography of SARS-
CoV-2 reveals that Omicron BA.1 and BA.2 are antigen-
ically distinct, Sci. Immunol., 7, eabq4450, doi:10.1126/
sciimmunol.abq4450.
19. Wilks, S. H., Mühlemann, B., Shen, X., Türeli, S.,
LeGresley, E. B., Netzl, A., Caniza, M. A., Chacaltana-
Huarcaya, J. N., Corman, V. M., Daniell, X., Datto,
M.B., Dawood, F.S., Denny, T.N., Drosten, C., Fouch-
ier, R. A. M., Garcia, P. J., Halfmann, P. J., Jassem, A.,
Jeworowski, L. M., Jones, T. C., Kawaoka, Y., Kram-
mer, F., McDanal, C., Pajon, R., Simon, V., Stockwell,
M.S., Tang, H., van Bakel,H., Veguilla,V., Webby, R.,
Montefiori, D. C., and Smith, D. J. (2023) Mapping
SARS-CoV-2 antigenic relationships and serological re-
sponses, Science, 382, eadj0070, doi: 10.1126/science.
adj0070.
20. Wang, W., Lusvarghi, S., Subramanian,R., Epsi, N. J.,
Wang, R., Goguet, E., Fries, A. C., Echegaray, F., Vas-
sell,R., Coggins, S.A., Richard, S.A., Lindholm, D.A.,
Mende,K., Ewers, E.C., Larson, D.T., Colombo, R.E.,
Colombo, C. J., Joseph, J. O., Rozman, J. S., Smith, A.,
Lalani, T., Berjohn, C. M., Maves, R. C., Jones, M. U.,
Mody, R., Huprikar, N., Livezey, J., Saunders, D., Hol-
lis-Perry, M., Wang, G., Ganesan, A., Simons, M. P.,
Broder, C. C., Tribble, D. R., Laing, E. D., Agan, B. K.,
Burgess, T. H., Mitre, E., Pollett, S. D., Katzelnick,
L. C., and Weiss, C. D. (2022) Antigenic cartography
of well-characterized human sera shows SARS-CoV-2
neutralization differences based on infection and vac-
cination history, Cell Host Microbe, 30, 1745-1758.e7,
doi:10.1016/j.chom.2022.10.012.
21. Van der Straten,K., Guerra,D., van Gils, M.J., Bont-
jer,I., Caniels, T.G., van Willigen, H.D.G., Wynberg,E.,
Poniman,M., Burger, J.A., Bouhuijs, J.H., van Rijswi-
jk,J., Olijhoek,W., Liesdek, M.H., Lavell, A.H.A., Ap-
pelman, B., Sikkens, J. J., Bomers, M. K., Han, A. X.,
Nichols, B.E., Prins,M., Vennema,H., Reusken,C., de
Jong, M.D., de Bree, G.J., Russell, C.A., Eggink,D., and
Sanders, R. W. (2022) Antigenic cartography using
sera from sequence-confirmed SARS-CoV-2 variants
of concern infections reveals antigenic divergence of
Omicron, Immunity, 55, 1725-1731.e4, doi: 10.1016/
j.immuni.2022.07.018.
22. Mühlemann,B., Trimpert,J., Walper,F., and Schmidt,
M. L. (2023) Antigenic cartography using vari-
ant-specific hamster sera reveals substantial an-
tigenicv among Omicron subvariants, bioRxiv,
doi:10.1101/2023.07.02.547076.
23. Bekliz, M., Adea, K., Vetter, P., Eberhardt, C. S.,
Hosszu-Fellous, K., Vu, D. L., Puhach, O., Essaidi-
Laziosi, M., Waldvogel-Abramowski, S., Stephan, C.,
L’Huillier, A.G., Siegrist, C.A., Didierlaurent, A.M., Kai-
ser,L., Meyer,B., and Eckerle,I. (2022) Neutralization
capacity of antibodies elicited through homologous or
heterologous infection or vaccination against SARS-
CoV-2 VOCs, Nat. Commun., 13, 3840, doi: 10.1038/
s41467-022-31556-1.
24. Lusvarghi, S., Pollett, S. D., Neerukonda, S. N.,
Wang,W., Wang,R., Vassell,R., Epsi, N.J., Fries, A.C.,
Agan, B.K., Lindholm, D.A., Colombo, C.J., Mody,R.,
Ewers, E.C., Lalani,T., Ganesan,A., Goguet,E., Hollis-
Perry,M., Coggins, S.A., Simons, M.P., Katzelnick, L.C.,
Wang,G., Tribble, D.R., Bentley,L., Eakin, A.E., Brod-
er, C. C., Erlandson, K. J., Laing, E. D., Burgess, T. H.,
Mitre,E., and Weiss, C.D. (2022) SARS-CoV-2 BA.1 vari-
ant is neutralized by vaccine booster-elicited serum
but evades most convalescent serum and therapeutic
antibodies, Sci. Transl. Med., 14, 8543, doi: 10.1126/
scitranslmed.abn8543.
25. Mykytyn, A.Z., Rosu, M.E., Kok,A., Rissmann,M., van
Amerongen, G., Geurtsvankessel, C., de Vries, R. D.,
Munnink, B. B. O., Smith, D. J., Koopmans, M. P. G.,