TUMOR-ASSOCIATED SENESCENT MACROPHAGES 851
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
Sun,X., Gao,Y., and Feng,H. (2022) Bufalin stimulates
antitumor immune response by driving tumor-in-
filtrating macrophage toward M1 phenotype in he-
patocellular carcinoma, J. Immunother. Cancer, 10,
e004297, doi:10.1136/JITC-2021-004297.
96. Chen, Y.J., Li, G.N., Li, X.J., Wei, L.X., Fu, M.J., Cheng,
Z.L., Yang,Z., Zhu, G.Q., Wang, X.D., Zhang,C., Zhang,
J. Y., Sun, Y. P., Saiyin, H., Zhang, J., Liu, W. R., Zhu,
W.W., Guan, K.L., Xiong,Y., Yang,Y., Ye,D., and Chen,
L.L. (2023) Targeting IRG1 reverses the immunosup-
pressive function of tumor-associated macrophages
and enhances cancer immunotherapy, Sci. Adv., 9,
eadg0654, doi:10.1126/SCIADV.ADG0654.
97. Liu, Q., Yang, C., Wang, S., Shi, D., Wei, C., Song, J.,
Lin, X., Dou, R., Bai, J., Xiang, Z., Huang, S., Liu, K.,
and Xiong, B. (2020) Wnt5a-induced M2 polarization
of tumor-associated macrophages via IL-10 promotes
colorectal cancer progression, Cell Commun. Signal.,
18, 51, doi:10.1186/S12964-020-00557-2.
98. Binnewies, M., Pollack, J. L., Rudolph, J., Dash, S.,
Abushawish, M., Lee, T., Jahchan, N. S., Canaday, P.,
Lu, E., Norng, M., Mankikar, S., Liu, V. M., Du, X.,
Chen, A., Mehta, R., Palmer, R., Juric, V., Liang, L.,
Baker, K. P., Reyno, L., Krummel, M. F., Streuli, M.,
and Sriram, V. (2021) Targeting TREM2 on tumor-
associated macrophages enhances immunothera-
py, Cell Rep., 37, 109844, doi: 10.1016/J.CELREP.2021.
109844.
99. Wang,Q., Bergholz, J.S., Ding,L., Lin,Z., Kabraji, S.K.,
Hughes, M.E., He,X., Xie,S., Jiang,T., Wang, W., Zo-
eller, J. J., Kim, H. J., Roberts, T. M., Konstantinopou-
los, P. A., Matulonis, U. A., Dillon, D. A., Winer, E. P.,
Lin, N. U., and Zhao, J. J. (2022) STING agonism re-
programs tumor-associated macrophages and over-
comes resistance to PARP inhibition in BRCA1-defi-
cient models of breast cancer, Nat. Commun., 13, 3022,
doi:10.1038/S41467-022-30568-1.
100. Yang,H., Zhang,Q., Xu,M., Wang,L., Chen,X., Feng,Y.,
Li,Y., Zhang,X., Cui,W., and Jia,X. (2020) CCL2-CCR2
axis recruits tumor associated macrophages to induce
immune evasion through PD-1 signaling in esopha-
geal carcinogenesis, Mol. Cancer, 19, 41, doi:10.1186/
S12943-020-01165-X.
101. Jiang, Y., Han, Q., Zhao, H., and Zhang, J. (2021) Pro-
motion of epithelial-mesenchymal transformation
by hepatocellular carcinoma-educated macrophages
through Wnt2b/β-catenin/c-Myc signaling and repro-
gramming glycolysis, J. Exp. Clin. Cancer Res., 40, 13,
doi:10.1186/s13046-020-01808-3.
102. Benner, B., Scarberry, L., Suarez-Kelly, L. P., Duggan,
M.C., Campbell, A.R., Smith,E., Lapurga,G., Jiang,K.,
Butchar, J. P., Tridandapani, S., Howard, J. H., Baioc-
chi, R. A., Mace, T. A., and Carson, W. E. (2019) Gen-
eration of monocyte-derived tumor-associated mac-
rophages using tumor-conditioned media provides a
novel method to study tumor-associated macrophages
in vitro, J. Immunother. Cancer, 7, 140, doi: 10.1186/
s40425-019-0622-0.
103. Jeannin, P., Paolini, L., Adam, C., and Delneste, Y.
(2018) The roles of CSFs on the functional polariza-
tion of tumor-associated macrophages, FEBS J., 285,
680-699, doi:10.1111/febs.14343.
104. Enukashvily, N.I., Ponomartsev, N. V., Ketkar,A., Su-
ezov,R., Chubar, A.V., Prjibelski, A.D., Shafranskaya,
D.D., Elmshäuser,S., Keber, C.U., Stefanova, V.N., Ako-
pov, A. L., Klingmüller, U., Pfefferle, P. I., Stiewe, T.,
Lauth,M., and Brichkina, A.I. (2023) Pericentromer-
ic satellite lncRNAs are induced in cancer-associat-
ed fibroblasts and regulate their functions in lung
tumorigenesis, Cell Death Dis., 14, 19, doi: 10.1038/
s41419-023-05553-1.
105. Heap, R. E., Marín-Rubio, J. L., Peltier, J., Heunis, T.,
Dannoura,A., Moore,A., and Trost,M. (2021) Proteom-
ics characterisation of the L929 cell supernatant and
its role in BMDM differentiation, Life Sci. Alliance, 4,
e202000957, doi:10.26508/LSA.202000957.
106. De Brito Monteiro,L., Davanzo, G.G., de Aguiar, C.F.,
Corrêa da Silva, F., Andrade, J. R., Campos Codo, A.,
Silva Pereira, J.A.D., Freitas, L.P., and Moraes- Vieira,
P. M. (2020) M-CSF- and L929-derived macrophages
present distinct metabolic profiles with similar in-
flammatory outcomes, Immunobiology, 225, 151935,
doi:10.1016/j.imbio.2020.151935.
107. Xu, N.-Y., Li,J., Wang, M.L., Chen, X.Y., Tang,R., and
Liu, X. Q. (2024) Fabrication of a coculture organoid
model in the biomimetic matrix of alginate to in-
vestigate breast cancer progression in a TAMs-lead-
ing immune microenvironment, ACS Appl. Ma-
ter. Interf.,
16, 11275-11288, doi: 10.1021/ACSAMI.
3C17863.
108. Tashireva, L.A., Kalinchuk, A.Y., Gerashchenko, T.S.,
Menyailo, M., Khozyainova, A., Denisov, E. V., and
Perelmuter, V. M. (2023) Spatial profile of tumor mi-
croenvironment in PD-L1-negative and PD-L1-positive
triple-negative breast cancer, Int.J. Mol. Sci., 24, 1433,
doi:10.3390/IJMS24021433.
109. Mei,Y., Xiao,W., Hu,H., Lu,G., Chen,L., Sun,Z., Lü,M.,
Ma,W., Jiang,T., Gao,Y., Li,L., Chen,G., Wang,Z., Li,H.,
Wu,D., Zhou,P., Leng,Q., and Jia,G. (2021) Single-cell
analyses reveal suppressive tumor microenvironment
of human colorectal cancer, Clin. Translat. Med., 11,
e422, doi:10.1002/CTM2.422.
110. Krishna,C., DiNatale, R.G., Kuo,F., Srivastava, R. M.,
Vuong,L., Chowell,D., Gupta,S., Vanderbilt,C., Puro-
hit, T.A., Liu,M., Kansler,E., Nixon, B.G., Chen, Y.B.,
Makarov,V., Blum, K.A., Attalla,K., Weng,S., Salmans,
M. L., Golkaram, M., Liu, L., Zhang, S., Vijayaragha-
van, R., Pawlowski, T., Reuter, V., Carlo, M. I., Voss,
M. H., Coleman, J., Russo, P., Motzer, R. J., Li, M. O.,
Leslie, C.S., Chan, T.A., and Hakimi, A.A. (2021) Sin-
gle-cell sequencing links multiregional immune land-
scapes and tissue-resident T cells in ccRCC to tumor