BOGOMIAKOVA et al.814
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
different culture conditions, Nat. Commun., 11, 1528,
doi:10.1038/s41467-020-15271-3.
96. Avior,Y., Lezmi,E., Eggan,K., and Benvenisty,N. (2021)
Cancer-related mutations identified in primed hu-
man pluripotent stem cells, Cell Stem Cell, 28, 10-11,
doi:10.1016/j.stem.2020.11.013.
97. Merkle, F.T., Ghosh,S., Genovese,G., Handsaker, R.E.,
Kashin,S., etal. (2022) Whole-genome analysis of hu-
man embryonic stem cells enables rational line se-
lection based on genetic variation, Cell Stem Cell, 29,
472-486.e7, doi:10.1016/j.stem.2022.01.011.
98. Puigdevall,P., Jerber,J., Danecek,P., Castellano,S., and
Kilpinen,H. (2023) Somatic mutations alter the differ-
entiation outcomes of iPSC-derived neurons, Cell Gen-
om., 3, 100280, doi:10.1016/j.xgen.2023.100280.
99. Ohm, J. E., Mali, P., Van Neste, L., Berman, D. M.,
Liang, L., et al. (2010) Cancer-related epigenome
changes associated with reprogramming to induced
pluripotent stem cells, Cancer Res., 70, 7662-7673,
doi:10.1158/0008-5472.CAN-10-1361.
100. Planello, A.C., Ji,J., Sharma,V., Singhania,R., Mbabaa-
li, F., et al. (2014) Aberrant DNA methylation repro-
gramming during induced pluripotent stem cell gen-
eration is dependent on the choice of reprogramming
factors, Cell Regen., 3, 4, doi:10.1186/2045-9769-3-4.
101. Weissbein, U., Plotnik, O., Vershkov, D., and Ben-
venisty, N. (2017) Culture-induced recurrent epigen-
etic aberrations in human pluripotent stem cells,
PLoS Genet., 13, e1006979, doi: 10.1371/journal.pgen.
1006979.
102. Ruiz,S., Diep,D., Gore,A., Panopoulos, A.D., Montser-
rat,N., et al. (2012) Identification of a specific repro-
gramming-associated epigenetic signature in human
induced pluripotent stem cells, Proc. Natl. Acad. Sci.
USA, 109, 16196-16201, doi:10.1073/pnas.1202352109.
103. Chin, M.H., Mason, M.J., Xie,W., Volinia,S., Singer,M.,
et al. (2009) Induced pluripotent stem cells and em-
bryonic stem cells are distinguished by gene expres-
sion signatures, Cell Stem Cell, 5, 111-123, doi:10.1016/
j.stem.2009.06.008.
104. Poetsch, M.S., Strano,A., and Guan,K. (2022) Human
induced pluripotent stem cells: from cell origin, ge-
nomic stability, and epigenetic memory to transla-
tional medicine, Stem Cells, 40, 546-555, doi:10.1093/
stmcls/sxac020.
105. Buckberry,S., Liu,X., Poppe,D., Tan, J.P., Sun,G., etal.
(2023) Transient naive reprogramming corrects hiPS
cells functionally and epigenetically, Nature, 620,
863-872, doi:10.1038/s41586-023-06424-7.
106. Wang,X., Qin,J., Zhao, R.C., and Zenke,M. (2014) Re-
duced immunogenicity of induced pluripotent stem
cells derived from Sertoli cells, PLoS One, 9, e106110,
doi:10.1371/journal.pone.0106110.
107. Liu,P., Chen,S., Li,X., Qin,L., Huang,K., etal. (2013)
Low immunogenicity of neural progenitor cells differ-
entiated from induced pluripotent stem cells derived
from less immunogenic somatic cells, PLoS One, 8,
e69617, doi:10.1371/journal.pone.0069617.
108. Pegram, H.J., Andrews, D.M., Smyth, M.J., Darcy, P.K.,
and Kershaw, M. H. (2011) Activating and inhibitory
receptors of natural killer cells, Immunol. Cell Biol.,
89, 216-224, doi:10.1038/icb.2010.78.
109. Netter, P., Anft, M., and Watzl, C. (2017) Termination
of the activating NK Cell immunological synapse is an
active and regulated process, J. Immunol., 199, 2528-
2535, doi:10.4049/jimmunol.1700394.
110. Simpson, A. J., Caballero, O. L., Jungbluth, A., Chen,
Y. T., and Old, L. J. (2005) Cancer/testis antigens, ga-
metogenesis and cancer, Nat. Rev. Cancer, 5, 615-625,
doi:10.1038/nrc1669.
111. Hong,Y., Zhao,Y., Li,H., Yang,Y., Chen,M., etal. (2023)
Engineering the maturation of stem cell-derived car-
diomyocytes, Front. Bioeng. Biotechnol., 11, 1155052,
doi:10.3389/fbioe.2023.1155052.
112. Tricot,T., Verfaillie, C. M., and Kumar, M. (2022) Cur-
rent status and challenges of human induced pluripo-
tent stem cell-derived liver models in drug discovery,
Cells, 11, 442, doi:10.3390/cells11030442.
113. Diane, A., Mohammed, L. I., and Al-Siddiqi, H. H.
(2023) Islets in the body are never flat: transition-
ing from two-dimensional (2D) monolayer culture to
three-dimensional (3D) spheroid for better efficien-
cy in the generation of functional hPSC-derived pan-
creatic β cells in vitro, Cell Commun. Signal., 21, 151,
doi:10.1186/s12964-023-01171-8.
114. Ma, H., Folmes, C. D., Wu, J., Morey, R., Mora-Castil-
la, S., et al. (2015) Metabolic rescue in pluripotent
cells from patients with mtDNA disease, Nature, 524,
234-238, doi:10.1038/nature14546.
115. Cacchiarelli, D., Trapnell, C., Ziller, M. J., Soumil-
lon, M., Cesana, M., et al. (2015) Integrative analyses
of human reprogramming reveal dynamic nature of
induced pluripotency, Cell, 162, 412-424, doi:10.1016/
j.cell.2015.06.016.
116. Choi, J., Lee, S., Mallard, W., Clement, K., Tagliazuc-
chi, G. M., et al. (2015) A comparison of genetically
matched cell lines reveals the equivalence of hu-
man iPSCs and ESCs, Nat. Biotechnol., 33, 1173-1181,
doi:10.1038/nbt.3388.
117. Idelson, M., Alper, R., Obolensky, A., Yachimovich-
Cohen,N., Rachmilewitz,J., etal. (2018) Immunologi-
cal properties of human embryonic stem cell-derived
retinal pigment epithelial cells, Stem Cell Rep., 11, 681-
695, doi:10.1016/j.stemcr.2018.07.009.
118. Yamasaki, S., Sugita, S., Horiuchi, M., Masuda, T., Fu-
jii,S., etal. (2021) Low immunogenicity and immuno-
suppressive properties of human ESC- and iPSC-de-
rived retinas, Stem Cell Rep., 16, 851-867, doi:10.1016/
j.stemcr.2021.02.021.
119. Edo, A., Sugita, S., Futatsugi, Y., Sho, J., Onishi, A.,
et al. (2020) Capacity of retinal ganglion cells de-
rived from human induced pluripotent stem cells to