NEW APPROACHES TO RECEPTOR INHIBITION 797
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
and Gruzman, A. (2022) Benzyl-para-di-[5-methyl-4-
(n-octylamino) pyrimidin-2(1H)one] as an interferon
beta (IFN-β) modulator, Mol. Diversity, 26, 2175-2188,
doi:10.1007/s11030-021-10324-1.
79. Toshchakov, V.Y., Fenton, M.J., and Vogel, S.N. (2007)
Cutting edge: differential inhibition of TLR signal-
ing pathways by cell-permeable peptides represent-
ing BB loops of TLRs, J. Immunol., 178, 2655-2660,
doi:10.4049/jimmunol.178.5.2655.
80. Couture, L. A., Piao, W., Ru, L. W., Vogel, S. N., and
Toshchakov, V. Y. (2012) Targeting toll-like recep-
tor (TLR) signaling by toll/interleukin-1 receptor
(TIR) domain-containing adapter protein/MyD88
adapter-like (TIRAP/Mal)-derived decoy peptides,
J. Biol. Chem., 287, 24641-24648, doi: 10.1074/jbc.
M112.360925.
81. Piao, W., Ru, L. W., Piepenbrink, K. H., Sundberg,
E.J., Vogel, S.N., and Toshchakov, V.Y. (2013) Recruit-
ment of TLR adapter TRIF to TLR4 signaling complex
is mediated by the second helical region of TRIF TIR
domain, Proc. Natl. Acad. Sci. USA, 110, 19036-19041,
doi:10.1073/pnas.1313575110.
82. Piao, W., Ru, L.W., and Toshchakov, V. Y. (2016) Dif-
ferential adapter recruitment by TLR2 co-receptors,
Pathogens Disease, 74, ftw043, doi: 10.1093/femspd/
ftw043.
83. Javmen,A., Szmacinski,H., Lakowicz, J.R., and Tosh-
chakov, V. Y. (2018) Blocking TIR domain interac-
tions in TLR9 signaling, J. Immunol., 201, 995-1006,
doi:10.4049/jimmunol.1800194.
84. Rock, F.L., Hardiman,G., Timans, J.C., Kastelein, R.A.,
and Bazan, J. F. (1998) A family of human receptors
structurally related to Drosophila toll, Proc. Natl. Acad.
Sci. USA, 95, 588-593, doi:10.1073/pnas.95.2.588.
85. Xu, Y., Tao, X., Shen, B., Horng, T., Medzhitov, R.,
Manley, J. L., and Tong, L. (2000) Structural basis
for signal transduction by the Toll/interleukin-1 re-
ceptor domains, Science, 408, 111-115, doi: 10.1038/
35040600.
86. Odendall, C., and Kagan, J. C. (2017) Activation and
pathogenic manipulation of the sensors of the in-
nate immune system, Microbes Infect., 19, 229-237,
doi:10.1016/j.micinf.2017.01.003.
87. Reddick, L. E., and Alto, N. M. (2014) Bacteria fight-
ing back: how pathogens target and subvert the
host innate immune system, Mol. Cell, 54, 321-328,
doi:10.1016/j.molcel.2014.03.010.
88. Bowie, A., Kiss-Toth, E., Symons, J. A., Smith, G. L.,
Dower, S.K., and O’Neill, L.A.J. (2000) A46R and A52R
from vaccinia virus are antagonists of host IL-1 and
toll-like receptor signaling, Proc. Natl. Acad. Sci. USA,
97, 10162-10167, doi:10.1073/pnas.160027697.
89. Azar, D. F., Haas, M., Fedosyuk, S., Rahaman, M. H.,
Hedger,A., Kobe,B., and Skern,T. (2020) Vaccinia virus
immunomodulator A46: destructive interactions with
MAL and MyD88 shown by negative-stain electron
microscopy, Structure, 28, 1271-1287.e5, doi:10.1016/
j.str.2020.09.007.
90. McCoy, S.L., Kurtz, S.E., MacArthur, C.J., Trune, D.R.,
and Hefeneider, S. H. (2005) Identification of a pep-
tide derived from vaccinia virus A52R TLR-dependent
signaling and reduces invivo, J.Immunol., 174, 3006-
3014, doi:10.4049/jimmunol.174.5.3006.
91. Tsung, A., McCoy, S. L., Klune, J. R., Geller, D. A., Bil-
liar, T.R., and Hefeneider, S.H. (2007) Anovel inhibi-
tory peptide of toll-like receptor signaling limits lipo-
polysaccharide-induced production of inflammatory
mediators and enhances survival in mice, Shock, 27,
364-369, doi:10.1097/01.shk.0000239773.95280.2c.
92. Cirl, C., Wieser, A., Yadav, M., Duerr, S., Schubert, S.,
Fischer, H., Stappert, D., Wantia, N., Rodriguez, N.,
Wagner,H., Svanborg,C., and Miethke,T. (2008) Sub-
version of Toll-like receptor signaling by a unique
family of bacterial Toll/interleukin-1 receptor do-
main-containing proteins, Nat. Med., 14, 399-406,
doi:10.1038/nm1734.
93. Snyder, G.A., Cirl,C., Jiang,J., Chen,K., Waldhuber,A.,
Smith,P., Römmler,F., Snyder,N., Fresquez,T., Dürr,S.,
Tjandra,N., Miethke,T., and Xiao, T.S. (2013) Molecu-
lar mechanisms for the subversion of MyD88 signaling
by TcpC from virulent uropathogenic Escherichia coli,
Proc. Natl. Acad. Sci. USA, 110, 6985-6990, doi:10.1073/
pnas.1215770110.
94. Ke,Y., Li,W., Wang,Y., Yang,M., Guo,J., Zhan,S., Du,X.,
Wang,Z., Yang,M., Li,J., Li,W., and Chen,Z. (2016) In-
hibition of TLR4 signaling by Brucella TIR-containing
protein TcpB-derived decoy peptides, Int.J. Med. Mi-
crobiol., 306, 391-400, doi:10.1016/j.ijmm.2016.05.003.
95. Krut, V.G., Chuvpilo, S.A., Astrakhantseva, I.V., Kozlo-
vskaya, L.I., Efimov, G.A., Kruglov, A.A., Drutskaya,
M.S., and Nedospasov, S.A. (2022) Will peptides help
to stop Covid-19? Biochemistry (Moscow), 87, 590-604,
doi:10.1134/S0006297922070021.
96. Loi, L. K., Yang, C. C., Lin, Y. C., Su, Y. F., Juan, Y. C.,
Chen, Y.H., and Chang, H.C. (2023) Decoy peptides ef-
fectively inhibit the binding of SARS-CoV-2 to ACE2 on
oral epithelial cells, Heliyon, 9, e22614, doi: 10.1016/
j.heliyon.2023.e22614.
97. Loiarro, M., Capolunghi, F., Fantò, N., Gallo, G., Cam-
po, S., Arseni, B., Carsetti, R., Carminati, P., De San-
tis, R., Ruggiero, V., and Sette, C. (2007) Pivotal Ad-
vance: Inhibition of MyD88 dimerization and recruit-
ment of IRAK1 and IRAK4 by a novel peptidomimetic
compound, J. Leukoc. Biol., 82, 801-810, doi: 10.1189/
jlb.1206746.
98. Szmacinski, H., Toshchakov, V., and Lakowicz, J. R.
(2014) Application of phasor plot and autofluores-
cence correction for study of heterogeneous cell pop-
ulation, J. Biomed. Optics, 19, 046017, doi: 10.1117/
1.jbo.19.4.046017.
99. Yamamoto,M., Sato,S., Hemmi,H., Uematsu,S., Hoshi-
no,K., Kaisho,T., Takeuchi,O., Takeda,K., and Akira,S.