UKRAINTSEV et al.686
BIOCHEMISTRY (Moscow) Vol. 89 No. 4 2024
Lavrik, O. I. (2019) A single-molecule atomic force
microscopy study of PARP1 and PARP2 recognition of
base excision repair DNA intermediates, J.Mol. Biol.,
431, 2655-2673, doi:10.1016/j.jmb.2019.05.028.
27. Davies, E., Teng, K. S., Conlan, R. S., and Wilks, S. P.
(2005) Ultra-high resolution imaging of DNA and nu-
cleosomes using non-contact atomic force microsco-
py, FEBS Lett., 579, 1702-1706, doi: 10.1016/j.febslet.
2005.02.028.
28. Han, W., Lindsay, S., and Jing, T. (1996) A magnet-
ically driven oscillating probe microscope for op-
eration in liquids, Appl. Phys. Lett., 69, 4111-4113,
doi:10.1063/1.117835.
29. Karymov, M.A., Tomschik,M., Leuba, S.H., Caiafa,P.,
and Zlatanova, J. (2001) DNA methylation-dependent
chromatin fiber compaction in vivo and in vitro: re-
quirement for linker histone, FASEBJ., 15, 2631-2641,
doi:10.1096/fj.01-0345com.
30. Stroh, C., Wang, H., Bash, R., Ashcroft, B., Nelson, J.,
Gruber, H., Lohr, D., Lindsay, S. M., and Hinterdorf-
er, P. (2004) Single-molecule recognition imaging mi-
croscopy, Proc. Natl. Acad. Sci. USA, 101, 12503-12507,
doi:10.1073/pnas.0403538101.
31. Zhang, M., Chen, G., Kumar, R., and Xu, B. (2013)
Mapping out the structural changes of natural and
pretreated plant cell wall surfaces by atomic force
microscopy single molecular recognition imag-
ing, Biotechnol. Biofuels, 6, 147, doi: 10.1186/1754-
6834-6-147.
32. Wang,H., Bash,R., Lindsay, S.M., and Lohr,D. (2005)
Solution AFM studies of human Swi-Snf and its inter-
actions with MMTV DNA and chromatin, Biophys. J.,
89, 3386-3398, doi:10.1529/biophysj.105.065391.
33. Bash, R., Wang, H., Anderson, C., Yodh, J., Hager, G.,
Lindsay, S. M., and Lohr, D. (2006) AFM imaging of
protein movements: histone H2A-H2B release during
nucleosome remodeling, FEBS Lett., 580, 4757-4761,
doi:10.1016/j.febslet.2006.06.101.
34. Bruno,M., Flaus,A., Stockdale,C., Rencurel,C., Ferrei-
ra,H., and Owen-Hughes,T. (2003) Histone H2A/H2B
dimer exchange by ATP-dependent chromatin remod-
eling activities, Mol. Cell, 12, 1599-1606, doi: 10.1016/
s1097-2765(03)00499-4.
35. Vicent, G.P., Nacht, A.S., Smith, C.L., Peterson, C.L.,
Dimitrov, S., and Beato, M. (2004) DNA instructed
displacement of histones H2A and H2B at an induc-
ible promoter, Mol. Cell, 16, 439-452, doi: 10.1016/
j.molcel.2004.10.025.
36. Xu,K., Sun,W., Shao,Y., Wei,F., Zhang,X., Wang,W.,
and Li, P. (2018) Recent development of PeakForce
Tapping mode atomic force microscopy and its appli-
cations on nanoscience, Nanotechnol. Rev., 7, 605-621,
doi:10.1515/ntrev-2018-0086.
37. McCauley, M. J., Huo, R., Becker, N., Holte, M. N.,
Muthurajan, U. M., Rouzina, I., Luger, K., Maher,
L.J.,3rd, Israeloff, N.E., and Williams, M.C. (2019) Sin-
gle and double box HMGB proteins differentially de-
stabilize nucleosomes, Nucleic Acids Res., 47, 666-678,
doi:10.1093/nar/gky1119.
38. Leung,C., Maradan,D., Kramer,A., Howorka,S., Mes-
quida, P., and Hoogenboom, B. W. (2010) Improved
Kelvin probe force microscopy for imaging individu-
al DNA molecules on insulating surfaces, Appl. Phys.
Lett., 97, 203703, doi:10.1063/1.3512867.
39. Wu,D., Kaur,P., Li, Z.M., Bradford, K.C., Wang,H., and
Erie, D.A. (2016) Visualizing the path of DNA through
proteins using DREEM imaging, Mol. Cell, 61, 315-323,
doi:10.1016/j.molcel.2015.12.012.
40. Bradford, K.C., Wilkins,H., Hao,P., Li, Z.M., Wang,B.,
Burke,D., Wu,D., Smith, A.E., Spaller,L., Du,C., Gauer,
J.W., Chan,E., Hsieh,P., Weninger, K.R., and Erie, D.A.
(2020) Dynamic human MutSα-MutLα complexes com-
pact mismatched DNA, Proc. Natl. Acad. Sci. USA, 117,
16302-16312, doi:10.1073/pnas.1918519117.
41. Adkins, N.L., Swygert, S.G., Kaur,P., Niu,H., Grigor-
yev, S.A., Sung,P., Wang,H., and Peterson, C.L. (2017)
Nucleosome-like, single-stranded DNA (ssDNA)-his-
tone octamer complexes and the implication for
DNA double strand break repair, J. Biol. Chem., 292,
5271-5281, doi:10.1074/jbc.M117.776369.
42. Guthold, M., Zhu, X., Rivetti, C., Yang, G., Thomson,
N. H., Kasas, S., Hansma, H. G., Smith, B., Hansma,
P.K., and Bustamante,C. (1999) Direct observation of
one-dimensional diffusion and transcription by Esche-
richia coli RNA polymerase, Biophys.J., 77, 2284-2294,
doi:10.1016/S0006-3495(99)77067-0.
43. Shlyakhtenko, L. S., Lushnikov, A. Y., and Lyubchen-
ko, Y. L. (2009) Dynamics of nucleosomes revealed
by time-lapse atomic force microscopy, Biochemistry,
48, 7842-7848, doi:10.1021/bi900977t.
44. Miyagi, A., Ando, T., and Lyubchenko, Y. L. (2011)
Dynamics of nucleosomes assessed with time-lapse
high-speed atomic force microscopy, Biochemistry,
50, 7901-7908, doi:10.1021/bi200946z.
45. Stumme-Diers, M.P., Banerjee,S., Hashemi,M., Sun,Z.,
and Lyubchenko, Y. L. (2018) Nanoscale dynamics
of centromere nucleosomes and the critical roles of
CENP-A, Nucleic Acids Res., 46, 94-103, doi: 10.1093/
nar/gkx933.
46. Sinha, K.K., Gross, J.D., and Narlikar, G.J. (2017) Dis-
tortion of histone octamer core promotes nucleosome
mobilization by a chromatin remodeler, Science, 355,
eaaa3761, doi:10.1126/science.aaa3761.
47. Onoa,B., Díaz-Celis,C., Cañari-Chumpitaz,C., Lee,A.,
and Bustamante,C. (2023) Real-time multistep asym-
metrical disassembly of nucleosomes and chroma-
tosomes visualized by high-speed atomic force mi-
croscopy, ACS Cent. Sci., 10, 122-137, doi: 10.1021/
acscentsci.3c00735.
48. Kato, S., Takada, S., and Fuchigami, S. (2023) Parti-
cle smoother to assimilate asynchronous movie data
of high-speed AFM with MD simulations, J. Chem.