TIKHONOVA et al.672
BIOCHEMISTRY (Moscow) Vol. 89 No. 4 2024
8. Villa,R., Forne,I., Muller,M., Imhof,A., Straub,T., and
Becker, P. B. (2012) MSL2 combines sensor and effec-
tor functions in homeostatic control of the Drosoph-
ila dosage compensation machinery, Mol. Cell, 48,
647-654, doi:10.1016/j.molcel.2012.09.012.
9. Schunter,S., Villa,R., Flynn,V., Heidelberger, J.B., Clas-
sen, A.-K., Beli,P., and Becker, P. B. (2017) Ubiquityla-
tion of the acetyltransferase MOF in Drosophila mela-
nogaster, PLoS One, 12, e0177408, doi:10.1371/journal.
pone.0177408.
10. Lyman, L.M., Copps, K., Rastelli, L., Kelley, R. L., and
Kuroda, M.I. (1997) Drosophila male-specific lethal-2
protein: structure/function analysis and dependence
on MSL-1 for chromosome association, Genetics,
147, 1743-1753, doi:10.1093/genetics/147.4.1743.
11. Hallacli, E., Lipp, M., Georgiev, P., Spielman, C., Cu-
sack, S., Akhtar, A., and Kadlec, J. (2012) Msl1-medi-
ated dimerization of the dosage compensation com-
plex is essential for male X-chromosome regulation
in Drosophila, Mol. Cell, 48, 587-600, doi: 10.1016/
j.molcel.2012.09.014.
12. Copps, K., Richman, R., Lyman, L. M., Chang, K. A.,
Rampersad-Ammons,J., and Kuroda, M.I. (1998) Com-
plex formation by the Drosophila MSL proteins: role
of the MSL2 RING finger in protein complex assembly,
EMBOJ., 17, 5409-5417, doi:10.1093/emboj/17.18.5409.
13. Gu, W., Szauter, P., and Lucchesi, J. C. (1998) Target-
ing of MOF, a putative histone acetyl transferase, to
the X chromosome of Drosophila melanogaster, Dev.
Genet., 22, 56-64, doi: 10.1002/(SICI)1520-6408(1998)
22:1<56::AID-DVG6>3.0.CO;2-6.
14. Kadlec, J., Hallacli, E., Lipp, M., Holz, H., San-
chez-Weatherby, J., Cusack, S., and Akhtar, A. (2011)
Structural basis for MOF and MSL3 recruitment into
the dosage compensation complex by MSL1, Nat.
Struct. Mol. Biol., 18, 142-149, doi:10.1038/nsmb.1960.
15. Scott, M.J., Pan, L. L., Cleland, S. B., Knox, A. L., and
Heinrich, J. (2000) MSL1 plays a central role in as-
sembly of the MSL complex, essential for dosage
compensation in Drosophila, EMBO J., 19, 144-155,
doi:10.1093/emboj/19.1.144.
16. Lee, C.G., Chang, K.A., Kuroda, M.I., and Hurwitz,J.
(1997) The NTPase/helicase activities of Drosophila
maleless, an essential factor in dosage compensation,
EMBOJ., 16, 2671-2681, doi:10.1093/emboj/16.10.2671.
17. Ilik, I.A., Quinn, J. J., Georgiev,P., Tavares-Cadete,F.,
Maticzka, D., Toscano, S., Wan, Y., Spitale, R. C., Lus-
combe, N., Backofen, R., et al. (2013) Tandem stem-
loops in roX RNAs act together to mediate X chromo-
some dosage compensation in Drosophila, Mol. Cell,
51, 156-173, doi:10.1016/j.molcel.2013.07.001.
18. Maenner, S., Muller, M., Frohlich, J., Langer, D., and
Becker, P. B. (2013) ATP-dependent roX RNA remod-
eling by the helicase maleless enables specific as-
sociation of MSL proteins, Mol. Cell, 51, 174-184,
doi:10.1016/j.molcel.2013.06.011.
19. Fauth, T., Muller-Planitz, F., Konig, C., Straub, T., and
Becker, P. B. (2010) The DNA binding CXC domain of
MSL2 is required for faithful targeting the dosage
compensation complex to the X chromosome, Nucleic
Acids Res., 38, 3209-3221, doi:10.1093/nar/gkq026.
20. Zheng,S., Villa,R., Wang,J., Feng,Y., Becker, P.B., and
Ye, K. (2014) Structural basis of X chromosome DNA
recognition by the MSL2 CXC domain during Drosoph-
ila dosage compensation, Genes Dev., 28, 2652-2662,
doi:10.1101/gad.250936.114.
21. Alekseyenko, A.A., Peng, S., Larschan, E., Gorchakov,
A.A., Lee, O.K., Kharchenko,P., McGrath, S.D., Wang,
C.I., Mardis, E.R., Park, P.J., etal. (2008) A sequence
motif within chromatin entry sites directs MSL estab-
lishment on the Drosophila X chromosome, Cell, 134,
599-609, doi:10.1016/j.cell.2008.06.033.
22. Straub,T., Grimaud,C., Gilfillan, G.D., Mitterweger,A.,
and Becker, P.B. (2008) The chromosomal high-affini-
ty binding sites for the Drosophila dosage compensa-
tion complex, PLoS Genet., 4, e1000302, doi: 10.1371/
journal.pgen.1000302.
23. Villa, R., Schauer, T., Smialowski, P., Straub, T., and
Becker, P. B. (2016) PionX sites mark the X chromo-
some for dosage compensation, Nature, 537, 244-248,
doi:10.1038/nature19338.
24. Soruco, M. M., Chery, J., Bishop, E. P., Siggers, T.,
Tolstorukov, M.Y., Leydon, A.R., Sugden, A.U., Goeb-
el,K., Feng,J., Xia,P., etal. (2013) The CLAMP protein
links the MSL complex to the X chromosome during
Drosophila dosage compensation, Genes Dev., 27,
1551-1556, doi:10.1101/gad.214585.113.
25. Tikhonova, E., Fedotova, A., Bonchuk, A., Mogila, V.,
Larschan, E. N., Georgiev, P., and Maksimenko, O.
(2019) The simultaneous interaction of MSL2 with
CLAMP and DNA provides redundancy in the initia-
tion of dosage compensation in Drosophila males, De-
velopment, 146, dev179663, doi:10.1242/dev.179663.
26. Tikhonova,E., Mariasina,S., Efimov,S., Polshakov,V.,
Maksimenko,O., Georgiev,P., and Bonchuk,A. (2022)
Structural basis for interaction between CLAMP and
MSL2 proteins involved in the specific recruitment
of the dosage compensation complex in Drosophila,
Nucleic Acids Res., 50, 6521-6531, doi: 10.1093/nar/
gkac455.
27. Albig, C., Tikhonova, E., Krause, S., Maksimenko, O.,
Regnard,C., and Becker, P.B. (2019) Factor cooperation
for chromosome discrimination in Drosophila, Nucleic
Acids Res., 47, 1706-1724, doi:10.1093/nar/gky1238.
28. Tikhonova, E., Mariasina, S., Arkova, O., Maksimen-
ko,O., Georgiev,P., and Bonchuk,A. (2022) Dimeriza-
tion activity of a disordered N-terminal domain
from Drosophila CLAMP protein, IJMS, 23, 3862,
doi:10.3390/ijms23073862.
29. Jordan, W., and Larschan, E. (2021) The zinc finger
protein CLAMP promotes long-range chromatin in-
teractions that mediate dosage compensation of the