TOWARDS DEVELOPMENT OF 4C-BASED METHOD 661
BIOCHEMISTRY (Moscow) Vol. 89 No. 4 2024
3. Fishman, V., Battulin, N., Nuriddinov, M., Maslo-
va, A., Zlotina, A., et al. (2019) 3D organization of
chicken genome demonstrates evolutionary con-
servation of topologically associated domains and
highlights unique architecture of erythrocytes’ chro-
matin, Nucleic Acids Res., 47, 648-665, doi: 10.1093/
nar/gky1103.
4. Ryzhkova,A., Taskina,A., Khabarova,A., Fishman,V.,
and Battulin,N. (2021) Erythrocytes 3D genome orga-
nization in vertebrates, Sci. Rep., 11, 4414, doi:10.1038/
s41598-021-83903-9.
5. Razin, S.V., and Gavrilov, A.A. (2020) The role of liq-
uid-liquid phase separation in the compartmental-
ization of cell nucleus and spatial genome organiza-
tion, Biochemistry (Moscow), 85, 643-650, doi:10.1134/
S0006297920060012.
6. Kantidze, O.L., and Razin, S. V. (2020) Weak interac-
tions in higher-order chromatin organization, Nucleic
Acids Res., 48, 4614-4626, doi:10.1093/nar/gkaa261.
7. Nuriddinov, M., and Fishman, V. (2019) C-InterSec-
ture-a computational tool for interspecies compari-
son of genome architecture, Bioinformatics (Oxford,
England), 35, 4912-4921, doi: 10.1093/bioinformatics/
btz415.
8. Lukyanchikova, V., Nuriddinov, M., Belokopytova, P.,
Taskina, A., Liang,J., et al. (2022) Anopheles mosqui-
toes reveal new principles of 3D genome organiza-
tion in insects, Nat. Commun., 13, 1960, doi: 10.1038/
s41467-022-29599-5.
9. Dias, J.D., Sarica,N., Cournac,A., Koszul,R., and Neu-
veut,C. (2022) Crosstalk between hepatitisB virus and
the 3D genome structure, Viruses, 14, 445, doi:10.3390/
v14020445.
10. Tang,D., Zhao,H., Wu,Y., Peng,B., Gao,Z., etal. (2021)
Transcriptionally inactive hepatitis B virus episome
DNA preferentially resides in the vicinity of chromo-
some 19 in 3D host genome upon infection, Cell Rep.,
35, 109288, doi:10.1016/j.celrep.2021.109288.
11. Sokol, M., Wabl, M., Ruiz, I. R., and Pedersen, F. S.
(2014) Novel principles of gamma-retroviral inser-
tional transcription activation in murine leukemia
virus-induced end-stage tumors, Retrovirology, 11, 36,
doi:10.1186/1742-4690-11-36.
12. Razin, S.V., Gavrilov, A.A., and Iarovaia, O.V. (2020)
Modification of nuclear compartments and the 3D ge-
nome in the course of a viral infection, Acta Naturae,
12, 34-46, doi:10.32607/actanaturae.11041.
13. Everett, R. D. (2013) The spatial organization of
DNA virus genomes in the nucleus, PLoS Pathog., 9,
e1003386, doi:10.1371/journal.ppat.1003386.
14. Corpet, A., Kleijwegt, C., Roubille, S., Juillard, F., Jac-
quet,K., etal. (2020) PML nuclear bodies and chroma-
tin dynamics: catch me if you can!, Nucleic Acids Res.,
48, 11890-11912, doi:10.1093/nar/gkaa828.
15. Rai, T.S., Glass,M., Cole, J.J., Rather, M.I., Marsden,M.,
etal. (2017) Histone chaperone HIRA deposits histone
H3.3 onto foreign viral DNA and contributes to anti-vi-
ral intrinsic immunity, Nucleic Acids Res., 45, 11673-
11683, doi:10.1093/nar/gkx771.
16. Schmid, M., Speiseder, T., Dobner, T., and Gonzalez,
R.A. (2014) DNA virus replication compartments,
J.Vi-
rol., 88, 1404-1420, doi:10.1128/JVI.02046-13.
17. Charman,M., and Weitzman, M.D. (2020) Replication
compartments of DNA viruses in the nucleus: loca-
tion, location, location, Viruses, 12, 151, doi:10.3390/
v12020151.
18. Kempfer,R., and Pombo, A. (2020) Methods for map-
ping 3D chromosome architecture, Nat. Rev. Genet., 21,
207-226, doi:10.1038/s41576-019-0195-2.
19. Belaghzal, H., Dekker, J., and Gibcus, J.H. (2017) Hi-C
2.0: an optimized Hi-C procedure for high-resolution
genome-wide mapping of chromosome conformation,
Methods (San Diego, Calif.), 123, 56-65, doi: 10.1016/
j.ymeth.2017.04.004.
20. Gridina,M., Mozheiko,E., Valeev,E., Nazarenko, L.P.,
Lopatkina, M. E., et al. (2021) A cookbook for DNase
Hi-C, Epigenet. Chromatin, 14, 15, doi:10.1186/s13072-
021-00389-5.
21. Gvritishvili, A.G., Leung, K.W., and Tombran-Tink,J.
(2010) Codon preference optimization increases het-
erologous PEDF expression, PLoS One, 5, e15056,
doi:10.1371/journal.pone.0015056.
22. Prajapati, H. K., Kumar, D., Yang, X.-M., Ma, C.-H.,
Mittal, P., et al. (2020) Hitchhiking on condensed
chromatin promotes plasmid persistence in yeast
without perturbing chromosome function, bioRxiv,
doi:10.1101/2020.06.08.139568.
23. Gracey Maniar, L.E., Maniar, J. M., Chen, Z.-Y., Lu, J.,
Fire, A.Z., etal. (2013) Minicircle DNA vectors achieve
sustained expression reflected by active chroma-
tin and transcriptional level, Mol. Ther., 21, 131-138,
doi:10.1038/mt.2012.244.
24. Dean, D.A. (1997) Import of plasmid DNA into the nu-
cleus is sequence specific, Exp. Cell Res., 230, 293-302,
doi:10.1006/excr.1996.3427.
25. Mladenova,V., Mladenov,E., and Russev,G. (2009) Or-
ganization of plasmid DNA into nucleosome-like struc-
tures after transfection in eukaryotic cells, Biotech-
nol. Biotechnolog. Equip., 23, 1044-1047, doi: 10.1080/
13102818.2009.10817609.
26. Hildebrand, E. M., and Dekker, J. (2020) Mechanisms
and functions of chromosome compartmentaliza-
tion, Trends Biochem. Sci., 45, 385-396, doi: 10.1016/
j.tibs.2020.01.002.
27. Erdel, F., and Rippe, K. (2018) Formation of chroma-
tin subcompartments by phase separation, Biophys.J.,
114, 2262-2270, doi:10.1016/j.bpj.2018.03.011.
28. Ogiyama,Y., Schuettengruber,B., Papadopoulos, G.L.,
Chang, J.-M., and Cavalli, G. (2018) Polycomb-depen-
dent chromatin looping contributes to gene silencing
during Drosophila development, Mol. Cell, 71, 73-88.
e5, doi:10.1016/j.molcel.2018.05.032.