GOLOV, GAVRILOV620
BIOCHEMISTRY (Moscow) Vol. 89 No. 4 2024
Nasmyth, K. (2010) Both interaction surfaces with-
in cohesin’s hinge domain are essential for its stable
chromosomal association, Curr. Biol., 20, 279-289,
doi:10.1016/j.cub.2009.12.059.
33. Golfier,S., Quail,T., Kimura,H., and Brugués,J. (2020)
Cohesin and condensin extrude DNA loops in a cell
cycle-dependent manner, Elife, 9, e53885, doi:10.7554/
eLife.53885.
34. Abramo, K., Valton, A.-L., Venev, S. V., Ozadam, H.,
Fox, A. N., and Dekker, J. (2019) Achromosome fold-
ing intermediate at the condensin-to-cohesin transi-
tion during telophase, Nat. Cell Biol., 21, 1393-1402,
doi:10.1038/s41556-019-0406-2.
35. Zhang,H., Emerson, D.J., Gilgenast, T.G., Titus, K.R.,
Lan, Y., Huang, P., Zhang, D., Wang, H., Keller, C. A.,
Giardine, B., Hardison, R. C., Phillips-Cremins, J. E.,
and Blobel, G.A. (2019) Chromatin structure dynam-
ics during the mitosis-to-G1 phase transition, Nature,
576, 158-162, doi:10.1038/s41586-019-1778-y.
36. Dauban, L., Montagne, R., Thierry, A., Lazar-Stefan-
ita, L., Bastié, N., Gadal, O., Cournac, A., Koszul, R.,
and Beckouët, F. (2020) Regulation of cohesin-medi-
ated chromosome folding by Eco1 and other part-
ners, Mol. Cell, 77, 1279-1293.e4, doi:10.1016/j.molcel.
2020.01.019.
37. Zuin,J., Dixon, J.R., van der Reijden, M.I.J.A., Ye,Z.,
Kolovos,P., Brouwer, R.W.W., van de Corput, M.P.C.,
van de Werken, H.J.G., Knoch, T.A., van Ijcken, W.F.J.,
Grosveld, F.G., Ren,B., and Wendt, K.S. (2014) Cohesin
and CTCF differentially affect chromatin architecture
and gene expression in human cells, Proc. Natl. Acad.
Sci. USA, 111, 996-1001, doi:10.1073/pnas.1317788111.
38. Busslinger, G.A., Stocsits, R.R., van der Lelij,P., Axels-
son,E., Tedeschi,A., Galjart,N., and Peters, J.-M. (2017)
Cohesin is positioned in mammalian genomes by
transcription, CTCF and Wapl, Nature, 544, 503-507,
doi:10.1038/nature22063.
39. Vian, L., Pękowska, A., Rao, S. S. P., Kieffer-Kwon,
K.-R., Jung, S., Baranello, L., Huang, S.-C., El Khatta-
bi,L., Dose, M., Pruett,N., Sanborn, A. L., Canela,A.,
Maman,Y., Oksanen,A., Resch,W., Li,X., Lee,B., Kov-
alchuk, A.L., Tang,Z., Nelson,S., Di Pierro,M., Cheng,
R.R., Machol,I., St Hilaire, B.G., Durand, N.C., etal.
(2018) The energetics and physiological impact of co-
hesin extrusion, Cell, 173, 1165-1178.e20, doi:10.1016/
j.cell.2018.03.072.
40. Banigan, E.J., Tang,W., van den Berg, A.A., Stocsits,
R.R., Wutz,G., Brandão, H.B., Busslinger, G.A., Peters,
J.-M., and Mirny, L.A. (2023) Transcription shapes 3D
chromatin organization by interacting with loop ex-
trusion, Proc. Natl. Acad. Sci. USA, 120, e2210480120,
doi:10.1073/pnas.2210480120.
41. Wutz, G., Várnai, C., Nagasaka, K., Cisneros, D. A.,
Stocsits, R. R., Tang, W., Schoenfelder, S., Jessberg-
er,G., Muhar,M., Hossain, M.J., Walther,N., Koch,B.,
Kueblbeck, M., Ellenberg, J., Zuber, J., Fraser, P., and
Peters,J.-M. (2017) Topologically associating domains
and chromatin loops depend on cohesin and are reg-
ulated by CTCF, WAPL, and PDS5 proteins, EMBO J.,
36, 3573-3599, doi:10.15252/embj.201798004.
42. Haarhuis, J.H.I., van der Weide, R.H., Blomen, V.A.,
Omar Yáñez-Cuna,J., Amendola,M., van Ruiten, M.S.,
Krijger, P. H. L., Teunissen, H., Medema, R. H., van
Steensel,B., Brummelkamp, T.R., de Wit,E., and Row-
land, B. D. (2017) The cohesin release factor WAPL
restricts chromatin loop extension, Cell, 169, 693-
707.e14, doi:10.1016/j.cell.2017.04.013.
43. Wutz,G., Ladurner,R., St Hilaire, B.G., Stocsits, R.R.,
Nagasaka,K., Pignard,B., Sanborn,A., Tang,W., Vár-
nai,C., Ivanov, M.P., Schoenfelder,S., van der Lelij,P.,
Huang, X., Dürnberger, G., Roitinger, E., Mechtler, K.,
Davidson, I. F., Fraser, P., Lieberman-Aiden, E., and
Peters, J.-M. (2020) ESCO1 and CTCF enable formation
of long chromatin loops by protecting cohesinSTAG1
from WAPL, Elife, 9, e52091, doi:10.7554/eLife.52091.
44. Costantino,L., Hsieh, T.-H.S., Lamothe,R., Darzacq,X.,
and Koshland,D. (2020) Cohesin residency determines
chromatin loop patterns, Elife, 9
, e59889, doi:10.7554/
eLife.59889.
45. Bastié, N., Chapard, C., Dauban, L., Gadal, O., Beck-
ouët,F., and Koszul,R. (2022) Smc3 acetylation, Pds5
and Scc2 control the translocase activity that es-
tablishes cohesin-dependent chromatin loops, Nat.
Struct. Mol. Biol., 29, 575-585, doi:10.1038/s41594-022-
00780-0.
46. Mizuguchi,T., Fudenberg, G., Mehta, S., Belton, J.-M.,
Taneja, N., Folco, H. D., FitzGerald, P., Dekker, J.,
Mirny, L., Barrowman, J., and Grewal, S. I. S. (2014)
Cohesin-dependent globules and heterochromatin
shape 3D genome architecture in S. pombe, Nature,
516, 432-435, doi:10.1038/nature13833.
47. Gandhi, R., Gillespie, P. J., and Hirano, T. (2006) Hu-
man Wapl is a cohesin-binding protein that promotes
sister-chromatid resolution in mitotic prophase, Curr.
Biol., 16, 2406-2417, doi:10.1016/j.cub.2006.10.061.
48. Huis in ’t Veld, P.J., Herzog,F., Ladurner,R., Davidson,
I. F., Piric, S., Kreidl, E., Bhaskara, V., Aebersold, R.,
and Peters, J.-M. (2014) Characterization of a DNA exit
gate in the human cohesin ring, Science, 346, 968-972,
doi:10.1126/science.1256904.
49. Alonso-Gil, D., and Losada, A. (2023) NIPBL and co-
hesin: new take on a classic tale, Trends Cell Biol., 33,
860-871, doi:10.1016/j.tcb.2023.03.006.
50. Schwarzer,W., Abdennur,N., Goloborodko,A., Pekow-
ska,A., Fudenberg,G., Loe-Mie,Y., Fonseca, N.A., Hu-
ber, W., Haering, C.H., Mirny, L., and Spitz,F. (2017)
Two independent modes of chromatin organization
revealed by cohesin removal, Nature, 551, 51-56,
doi:10.1038/nature24281.
51. Tedeschi, A., Wutz, G., Huet, S., Jaritz, M., Wuen-
sche, A., Schirghuber, E., Davidson, I. F., Tang, W.,
Cisneros, D.A., Bhaskara,V., Nishiyama,T., Vaziri,A.,