GAVRILOV, GAVRILOVA354
BIOCHEMISTRY (Moscow) Vol. 89 No. 2 2024
A. D. N. ed.) New York Acad. Sci., New York, pp. 496-
501, doi:10.1196/annals.1297.091.
56. Finch, C. E., and Kirkwood, T. B. L. (2000) Chance,
Development, and Aging, Oxford University Press,
NewYork, Oxford.
57. Roy, S., and Majumdar, S. (2022) Developmental noise
and stability, in Noise and Randomness in Living Sys-
tem, Springer Singapore, Singapore, pp. 119-124,
doi:10.1007/978-981-16-9583-4_12.
58. Vaux, D.L., and Korsmeyer, S.J. (1999) Cell Death in De-
velopment, Cell, 96, 245-254, doi: 10.1016/S0092-8674
(00)80564-4.
59. Kinzina, E. D., Podolskiy, D. I., Dmitriev, S. E., and
Gladyshev, V. N. (2019) Patterns of Aging Biomark-
ers, Mortality, and Damaging Mutations Illuminate
the Beginning of Aging and Causes of Early-Life
Mortality, Cell Reports, 29, 4276-4284, doi: 10.1016/
j.celrep.2019.11.091.
60. Gladyshev, V. N. (2016) Aging: progressive decline in
fitness due to the rising deleteriome adjusted by ge-
netic, environmental, and stochastic processes, Aging
Cell, 15, 594-602, doi:10.1111/acel.12480.
61. Gavrilov, L.A., and Gavrilova, N.S. (1997) Parental age
at conception and offspring longevity, Rev. Clin. Geron-
tol., 7, 5-12, doi:10.1017/S0959259897000026.
62. Gavrilov, L. A., and Gavrilova, N. S. (2015) Predic-
tors of exceptional longevity: Effects of early-life
and midlife conditions, and familial longevity, North
Am. Actuar. J., 19, 174-186, doi: 10.1080/10920277.
2015.1018390.
63. Gavrilov, L. A., Gavrilova, N. S., Kroutko, V. N., Evdo-
kushkina, G. N., Semyonova, V. G., Gavrilova, A. L.,
Lapshin, E. V., Evdokushkina, N. N., and Kushnare-
va, Y. E. (1997) Mutation load and human longevity,
Mutat. Res., 377, 61-62.
64. Doblhammer, G., and Vaupel, J. (2001) Lifespan de-
pends on month of birth, Proc. Natl. Acad. Sci. USA,
98, 2934-2939, doi:10.1073/pnas.041431898.
65. Gavrilov, L. A., and Gavrilova, N. S. (2011) Season of
birth and exceptional longevity: comparative study
of american centenarians, their siblings, and spous-
es, J. Aging Res., 2011, 104616, doi: 10.4061/2011/
104616.
66. Jarry, V., Gagnon, A., and Bourbeau, R. (2013) Mater-
nal age, birth order and other early-life factors: a
family-level approach to exploring exceptional sur-
vival, Vienna Yearbook Populat. Res., 11, 263-284,
doi:10.1553/populationyearbook2013s267.
67. Barker, D. J. P. (1998) Mothers, Babies, and Disease in
Later Life (2nd Edn), Churchill Livingstone, London.
68. Kuh, D., and Ben-Shlomo, B. (1997) A Life Course Ap-
proach to Chronic Disease Epidemiology, Oxford Uni-
versity Press, Oxford.
69. Gavrilov, L. A., and Gavrilova, N. S. (2003) Early-life
factors modulating lifespan, in Modulating Aging
and Longevity (Rattan, S. I. S. ed.) Kluwer Academic
Publishers, Dordrecht, The Netherlands, pp. 27-50,
doi:10.1007/978-94-017-0283-6_3.
70. Vaiserman, A. M. (2019) Early Life Origins of Ageing
and Longevity, Springer Cham, doi: 10.1007/978-3-
030-24958-8.
71. Leake, D. W. (2022) Tracing slow phenoptosis to the
prenatal stage in social vertebrates, Biochemistry (Mos-
cow), 87, 1512-1527, doi:10.1134/S0006297922120094.
72. Richardson, R.B., Allan, D.S., and Le,Y. (2014) Greater
organ involution in highly proliferative tissues asso-
ciated with the early onset and acceleration of age-
ing in humans, Exp. Gerontol., 55, 80-91, doi:10.1016/
j.exger.2014.03.015.
73. Tower,J. (2015) Programmed cell death in aging, Age-
ing Res. Rev., 23, 90-100, doi:10.1016/j.arr.2015.04.002.
74. Galkin,F., Zhang, B.H., Dmitriev, S.E., and Gladyshev,
V.N. (2019) Reversibility of irreversible aging, Ageing
Res. Rev., 49, 104-114, doi:10.1016/j.arr.2018.11.008.
75. Wu, H. E. (2014) Cell Death. Mechanism and Disease,
Springer New York, doi:10.1007/978-1-4614-9302-0.
76. Denic,A., Lieske, J.C., Chakkera, H.A., Poggio, E.D., Al-
exander, M.P., Singh,P., Kremers, W.K., Lerman, L.O.,
and Rule, A. D. (2016) The substantial loss of neph-
rons in healthy human kidneys with aging, J.Am. Soc.
Nephrol., 28, 313-320, doi:10.1681/asn.2016020154.
77. Fricker,M., Tolkovsky, A.M., Borutaite,V., Coleman,M.,
and Brown, G.C. (2018) Neuronal cell death, Physiol.
Rev., 98, 813-880, doi:10.1152/physrev.00011.2017.
78. Buetow, D. E. (1971) Cellular content and cellular pro-
liferation changes in the tissues and organs of the
aging mammal, in Cellular and Molecular Renewal
in the Mammalian Body (Cameron, I. L., and Thrash-
er, J. D., eds.) Academic Press, New York, pp. 87-107,
doi:10.1016/B978-0-12-156940-2.50010-5.
79. Clarke, G., Collins, R. A., Leavitt, B. R., Andrews,
D. F., Hayden, M. R., Lumsden, C. J., and McInnes,
R. R. (2000) A one-hit model of cell death in inherit-
ed neuronal degenerations, Nature, 406, 195-199,
doi:10.1038/35018098.
80. Clarke,G., and Lumsden, C.J. (2005) Scale-free neuro-
degeneration: cellular heterogeneity and the stretched
exponential kinetics of cell death, J.Theor. Biol., 233,
515-525, doi:10.1016/j.jtbi.2004.10.028.
81. Heintz, N. (2000) One-hit neuronal death, Nature,
406, 137-138, doi:10.1038/35018196.
82. Clarke, G., Lumsden, C. J., and McInnes, R. R. (2001)
Inherited neurodegenerative diseases: the one-hit
model of neurodegeneration, Hum. Mol. Genet., 10,
2269-2275, doi:10.1093/hmg/10.20.2269.
83. Holland, D., Desikan, R. S., Dale, A. M., and McEvoy,
L.K. (2012) Rates of decline in Alzheimer’s disease de-
crease with age, PLoS One, 7, 12, doi:10.1371/journal.
pone.0042325.
84. Beard, R. E. (1959) Note on some mathematical mor-
tality models, in The lifespan of Animals (Wolsten-
holme, E. W., and O’Connor, M. O., eds) Little, Brown