EVOLUTION OF LONGEVITY AS A SPECIES-SPECIFIC TRAIT 337
BIOCHEMISTRY (Moscow) Vol. 89 No. 2 2024
24. Voituron, Y., De Fraipont, M., Issartel, J., Guillau-
me,O., and Clobert,J. (2011) Extreme lifespan of the
human fish (Proteus anguinus): a challenge for age-
ing mechanisms, Biol. Lett., 7, 105107, doi: 10.1098/
rsbl.2010.0539.
25. Kostanjšek,R., Diderichsen,B., Recknagel,H., Gunde-
Cimerman,N., Gostinčar,C., Fan,G., Kordiš,D., Tron-
telj,P., Jiang,H., Bolund,L., and Luo,Y. (2022) Toward
the massive genome of Proteus anguinus-illuminating
longevity, regeneration, convergent evolution, and
metabolic disorders, Ann. N. Y. Acad. Sci., 1507, 5-11,
doi:10.1111/nyas.14686.
26. Voituron, Y., Guillaume, O., Dumet, A., Zahn, S., and
Criscuolo, F. (2023) Temperature-independent telo-
mere lengthening with age in the long-lived human
fish (Proteus anguinus), Proc. Biol. Sci., 290, 20230503,
doi:10.1098/rspb.2023.0503.
27. Delhaye, J., Salamin, N., Roulin, A., Criscuolo, F.,
Bize,P., and Christe,P. (2016) Interspecific correlation
between red blood cell mitochondrial ROS produc-
tion, cardiolipin content and longevity in birds, Age
(Dordr), 38, 433-443, doi:10.1007/s11357-016-9940-z.
28. Amir,Y., Insler,M., Giller,A., Gutman,D., and Atzmon,G.
(2020) Senescence and longevity of sea urchins, Genes
(Basel), 11, 573, doi:10.3390/genes11050573.
29. Medina-Feliciano, J.G., and García-Arrarás, J.E. (2021)
Regeneration in echinoderms: molecular advance-
ments, Front. Cell. Dev. Biol., 9, 768641, doi: 10.3389/
fcell.2021.768641.
30. Korotkova, D. D., Lyubetsky, V. A., Ivanova, A. S.,
Rubanov, L.I., Seliverstov, A. V., Zverkov, O.A., Mar-
tynova, N.Y., Nesterenko, A.M., Tereshina, M.B., Pe-
shkin, L., and Zaraisky, A. G. (2019) Bioinformatics
screening of genes specific for well-regenerating ver-
tebrates reveals c-answer, a regulator of brain devel-
opment and regeneration, Cell Rep., 29, 1027-1040.e6,
doi:10.1016/j.celrep.2019.09.038.
31. Kolora, S.R.R., Owens, G.L., Vazquez, J.M., Stubbs,A.,
Chatla, K., Jainese, C., Seeto, K., McCrea, M., Sand-
el, M. W., Vianna, J. A., Maslenikov, K., Bachtrog, D.,
Orr, J.W., Love,M., and Sudmant, P.H. (2021) Origins
and evolution of extreme life span in Pacific Ocean
rockfishes, Science, 374, 842-847, doi:10.1126/science.
abg5332.
32. Reinke, B.A., Cayuela,H., Janzen, F.J., Lemaître, J.F.,
Gaillard, J.M., Lawing, A.M., Iverson, J.B., Christian-
sen, D. G., Martínez-Solano, I., Sánchez-Montes, G.,
Gutiérrez-Rodríguez, J., Rose, F. L., Nelson, N., Ke-
all,S., Crivelli, A.J., Nazirides,T., Grimm-Seyfarth,A.,
Henle,K., Mori, E., Guiller,G., Homan, R., Olivier,A.,
Muths,E., Hossack, B. R., Bonnet, X., et al. (2022) Di-
verse aging rates in ectothermic tetrapods provide in-
sights for the evolution of aging and longevity, Science,
376, 1459-1466, doi:10.1126/science.abm0151.
33. Skulachev, V. P., Holtze, S., Vyssokikh, M. Y., Bakee-
va, L.E., Skulachev, M.V., Markov, A.V., Hildebrandt,
T.B., and Sadovnichii, V.A. (2017) Neoteny, prolonga-
tion of youth: From naked mole rats to “naked apes”
(humans), Physiol. Rev., 97, 699-720, doi: 10.1152/
physrev.00040.2015.
34. Skulachev, V.P., Shilovsky, G.A., Putyatina, T.S., Pop-
ov, N.A., Markov, A.V., Skulachev, M.V., and Sadovni-
chii, V. A. (2020) Perspectives of Homo sapiens lifes-
pan extension: focus on external or internal resourc-
es? Aging (Albany NY), 12, 5566-5584, doi: 10.18632/
aging.102981.
35. Wilkinson, P. M., Rainwater, T. R., Woodward, A. R.,
Leone, E.H., and Carter,C. (2016) Determinate growth
and reproductive lifespan in the American alliga-
tor (Alligator mississippiensis): evidence from long-
term recaptures, Copeia, 104, 843-852, doi: 10.1643/
CH-16-430.
36. Moreira, M.O., Qu, Y.F., and Wiens, J.J. (2021) Large-
scale evolution of body temperatures in land verte-
brates, Evol. Lett., 5, 484-494, doi:10.1002/evl3.249.
37. Clarke, A., and Pörtner, H. O. (2010) Temperature,
metabolic power and the evolution of endother-
my, Biol. Rev., 85, 703-727, doi: 10.1111/j.1469-185X.
2010.00122.x.
38. Skulachev, M. V., Severin, F. F., and Skulachev, V. P.
(2015) Aging as an evolvability-increasing program
which can be switched off by organism to mobilize
additional resources for survival, Curr. Aging Sci.,
8, 95-109, doi:10.2174/1874609808666150422122401.
39. Skulachev, V.P., Vyssokikh, M.Y., Chernyak, B.V., Aver-
ina, O.A., Andreev-Andrievskiy, A.A., Zinovkin, R.A.,
Lyamzaev, K.G., Marey, M.V., Egorov, M.V., Frolova,
O.J., Zorov, D. B., Skulachev, M. V., and Sadovnichii,
V.A. (2023) Mitochondrion-targeted antioxidant SkQ1
prevents rapid animal death caused by highly di-
verse shocks, Sci. Rep., 13, 4326, doi: 10.1038/s41598-
023-31281-31289.
40. Skulachev, V. P., Vyssokikh, M. Y., Chernyak, B. V.,
Mulkidjanian, A.Y., Skulachev, M.V., Shilovsky, G.A.,
Lyamzaev, K. G., Borisov, V.B., Severin, F.F., and Sa-
dovnichii, V. A. (2023) Six functions of respiration:
isn’t it time to take control over ROS production in
mitochondria, and aging along with it? Int.J. Mol. Sci.,
24, 12540, doi:10.3390/ijms241612540.
41. Patnaik, B. K. (1994) Ageing in reptiles, Gerontology,
40, 200-220, doi:10.1159/000213588.
42. Alvarez, J. A., and Vaupel, J. W. (2023) Mortality as
a function of survival, Demography, 60, 327-342,
doi:10.1215/00703370-10429097.
43. da Silva, R., Conde, D. A., Baudisch, A., and Colche-
ro, F. (2022) Slow and negligible senescence among
testudines challenges evolutionary theories of senes-
cence, Science, 376, 1466-1470, doi: 10.1126/science.
abl7811.
44. Frýdlová, P., Mrzílková, J., Šeremeta, M., Křemen, J.,
Dudák, J., Žemlička, J., Minnich, B., Kverková, K.,
Němec, P., Zach, P., and Frynta, D. (2020) Determi-