ENHANCED ROS PRODUCTION IN MITOCHONDRIA 297
BIOCHEMISTRY (Moscow) Vol. 89 No. 2 2024
Buffenstein,R., and Brand, M.D. (2007) Low rates of
hydrogen peroxide production by isolated heart mi-
tochondria associate with long maximum lifespan
in vertebrate homeotherms, Aging Cell, 6, 607-618,
doi:10.1111/j.1474-9726.2007.00312.x.
43. Scialo,F., Sriram,A., Fernandez-Ayala,D., Gubina,N.,
Lohmus, M., Nelson, G., Logan, A., Cooper, H. M.,
Navas,P., Enriquez, J. A., Murphy, M. P., and Sanz,A.
(2016) Mitochondrial ROS produced via reverse elec-
tron transport extend animal lifespan, Cell Metab.,
23, 725-734, doi:10.1016/j.cmet.2016.03.009.
44. Brand, M.D., Goncalves, R.L.S., Orr, A.L., Vargas,L.,
Gerencser, A. A., Borch Jensen, M., Wang, Y. T.,
Melov,S., Turk, C. N., Matzen, J. T., Dardov, V.J., Pet-
rassi, H. M., Meeusen, S. L., Perevoshchikova, I. V.,
Jasper, H., Brookes, P. S., and Ainscow, E. K. (2016)
Suppressors of superoxide-H
2
O
2
production at site IQ
of mitochondrial complex I protect against stem cell
hyperplasia and ischemia-reperfusion injury, Cell
Metab.,24, 582-592, doi:10.1016/j.cmet.2016.08.012.
45. Goncalves, R. L. S., Quinlan, C. L., Perevoshchikova,
I.V., Hey-Mogensen,M., and Brand, M.D. (2015) Sites
of superoxide and hydrogen peroxide production by
muscle mitochondria assessed ex vivo under condi-
tions mimicking rest and exercise,J.Biol. Chem.,290,
209-227, doi:10.1074/jbc.M114.619072.
46. Fendel,U., Tocilescu, M.A., Kerscher,S., and Brandt,U.
(2008) Exploring the inhibitor binding pocket of re-
spiratory complex I, Biochim. Biophys. Acta, 1777,
660-665, doi:10.1016/j.bbabio.2008.04.033.
47. Boveris, A., and Chance,B. (1973) The mitochondrial
generation of hydrogen peroxide. General properties
and effect of hyperbaric oxygen,Biochem.J.,134, 707-
716, doi:10.1042/bj1340707.
48. Korshunov, S. S., Skulachev, V. P., and Starkov, A. A.
(1997) High protonic potential actuates a mechanism
of production of reactive oxygen species in mito-
chondria, FEBS Lett., 416, 15-18, doi: 10.1016/S0014-
5793(97)01159-9.
49. Fink, B. D., Bai, F., Yu, L., Sheldon, R. D., Sharma,A.,
Taylor, E. B., and Sivitz, W. I. (2018) Oxaloacetic acid
mediates ADP-dependent inhibition of mitochondri-
al complex II-driven respiration, J. Biol. Chem., 293,
19932-19941, doi:10.1074/jbc.RA118.005144.
50. Zeyelmaker, W. P., and Slater, E. C. (1967) The in-
hibition of succinate dehydrogenase by oxaloace-
tate,Biochim. Biophys. Acta,132, 210-212, doi:10.1016/
0005-2744(67)90214-8.
51. Nicholls, D. G. (1974) The influence of respiration
and ATP hydrolysis on the proton-electrochemical
gradient across the inner membrane of rat-liver mi-
tochondria as determined by ion distribution, Eur. J.
Biochem., 50, 305-315, doi: 10.1111/j.1432-1033.1974.
tb03899.x.
52. Nicholls, D.G. (1977) The effective proton conduction
of the inner membrane of mitochondria from brown
adipose tissue. Dependency on proton electrochem-
ical potential gradient, Eur. J. Biochem., 77, 349-356,
doi:10.1111/j.1432-1033.1977.tb11674.x.
53. Chouchani, E.T., Pell, V.R., Gaude,E., Aksentijevic,D.,
Sundier, S.Y., Robb, E. L., Logan,A., Nadtochiy, S.M.,
Ord, E.N., Smith, A.C., Eyassu,F., Shirley,R., Hu, C.H.,
Dare, A. J., James, A. M., Rogatti, S., Hartley, R. C.,
Eaton, S., Costa, A. S., Brookes, P. S., Davidson, S. M.,
Duchen, M. R., Saeb-Parsy, K., Shattock, M. J., Robin-
son, A. J., Work, L. M., Frezza, C., Krieg,T., and Mur-
phy, M.P. (2014) Ischaemic accumulation of succinate
controls reperfusion injury through mitochondrial
ROS,Nature,515, 431-435, doi:10.1038/nature13909.
54. Brockmann, K., Bjornstad, A., Dechent, P., Korenke,
C.G., Smeitink,J., Trijbels, J.M., Athanassopoulos, S.,
Villagran,R., Skjeldal, O.H., Wilichowski,E., Frahm,J.,
and Hanefeld,F. (2002) Succinate in dystrophic white
matter: a proton magnetic resonance spectrosco-
py finding characteristic for complex II deficiency,
Ann. Neurol.,52, 38-46, doi:10.1002/ana.10232.
55. Mills, E.L., Kelly,B., Logan,A., Costa, A.S., Varma,M.,
Bryant, C. E., Tourlomousis, P., Dabritz, J. H., Gottli-
eb, E., Latorre, I., Corr, S. C., McManus, G., Ryan, D.,
Jacobs, H. T., Szibor, M., Xavier, R. J., Braun, T., Frez-
za, C., Murphy, M. P., and O’Neill, L. A. (2016) Succi-
nate dehydrogenase supports metabolic repurpos-
ing of mitochondria to drive inflammatory macro-
phages, Cell, 167, 457-470.e413, doi: 10.1016/j.cell.
2016.08.064.
56. Starkov, A. A., Fiskum, G., Chinopoulos, C., Lorenzo,
B.J., Browne, S.E., Patel, M.S., and Beal, M.F. (2004) Mi-
tochondrial alpha-ketoglutarate dehydrogenase com-
plex generates reactive oxygen species, J. Neurosci.,
24, 7779-7788, doi:10.1523/JNEUROSCI.1899-04.2004.
57. Lambert, A. J., Buckingham, J. A., Boysen, H. M., and
Brand, M. D. (2010) Low complex I content explains
the low hydrogen peroxide production rate of heart
mitochondria from the long-lived pigeon, Columba
livia, Aging Cell, 9, 78-91, doi: 10.1111/j.1474-9726.
2009.00538.x.
58. Lesnefsky, E.J., Chen,Q., and Hoppel, C.L. (2016) Mi-
tochondrial metabolism in aging heart,Circ. Res.,118,
1593-1611, doi:10.1161/CIRCRESAHA.116.307505.
59. Perevoshchikova, I. V., Quinlan, C. L., Orr, A. L., Ger-
encser, A. A., and Brand, M. D. (2013) Sites of super-
oxide and hydrogen peroxide production during
fatty acid oxidation in rat skeletal muscle mitochon-
dria,Free Radic. Biol. Med.,61, 298-309, doi: 10.1016/
j.freeradbiomed.2013.04.006.
60. Seifert, E. L., Estey, C., Xuan, J. Y., and Harper, M.-E.
(2010) Electron transport chain-dependent and -in-
dependent mechanisms of mitochondrial H
2
O
2
emis-
sion during long-chain fatty acid oxidation, J. Biol.
Chem.,285, 5748-5758, doi:10.1074/jbc.M109.026203.
61. Lopez-Torres, M., Gredilla, R., Sanz, A., and Bar-
ja,G. (2002) Influence of aging and long-term caloric