MITOCHONDRIAL PROTEINS AND MEMBRANES IN NATURAL ENVIRONMENT 267
BIOCHEMISTRY (Moscow) Vol. 89 No. 2 2024
cryoelectron tomography, Nanotechnol. Russia, 15,
83-89, doi:10.1134/S1995078020010139.
17. Liu, Y.-T., Zhang,H., Wang,H., Tao, C.-L., Bi, G.-Q., and
Zhou, Z. H. (2022) Isotropic reconstruction for elec-
tron tomography with deep learning, Nat. Commun.,
13, 6482, doi:10.1038/s41467-022-33957-8.
18. Martinez-Sanchez, A., Garcia, I., Asano, S., Lucic, V.,
and Fernandez, J. J. (2014) Robust membrane de-
tection based on tensor voting for electron tomog-
raphy, J. Struct. Biol., 186, 49-61, doi: 10.1016/j.jsb.
2014.02.015.
19. Castaño-Díez, D., Kudryashev, M., Arheit, M., and
Stahlberg, H. (2012) Dynamo: A flexible, user-friend-
ly development tool for subtomogram averaging of
cryo-EM data in high-performance computing envi-
ronments, J. Struct. Biol., 178, 139-151, doi: 10.1016/
j.jsb.2011.12.017.
20. Tegunov,D., and Cramer,P. (2019) Real-time cryo-elec-
tron microscopy data preprocessing with Warp,
Nat. Methods, 16, 1146-1152, doi: 10.1038/s41592-
019-0580-y.
21. Bharat, T. A. M., and Scheres, S. H. W. (2016) Resolv-
ing macromolecular structures from electron cryo-
Tomography data using subtomogram averaging in
RELION, Nat. Protoc., 11, 2054-2065, doi: 10.1038/
nprot.2016.124.
22. Asano,S., Fukuda,Y., Beck,F., Aufderheide,A., Först-
er,F., Danev,R., and Baumeister,W. (2015) A molecular
census of 26S proteasomes in intact neurons, Science,
347, 439-442, doi:10.1126/science.1261197.
23. Ashleigh, T., Swerdlow, R. H., and Beal, M. F. (2023)
Therole of mitochondrial dysfunction in Alzheimer’s
disease pathogenesis, Alzheimers Dement. J. Alzhei-
mers Assoc., 19, 333-342, doi:10.1002/alz.12683.
24. Bhatia,S., Rawal,R., Sharma, P., Singh, T., Singh, M.,
and Singh,V. (2022) Mitochondrial dysfunction in Alz-
heimer’s disease: opportunities for drug development,
Curr. Neuropharmacol., 20, 675-692, doi: 10.2174/
1570159X19666210517114016.
25. Eubel,H., Heinemeyer,J., and Braun, H.-P. (2004) Iden-
tification and characterization of respirasomes in
potato mitochondria, Plant Physiol., 134, 1450-1459,
doi:10.1104/pp.103.038018.
26. Chaban,Y., Boekema, E.J., and Dudkina, N.V. (2014)
Structures of mitochondrial oxidative phosphory-
lation supercomplexes and mechanisms for their
stabilization, Biochim. Biophys. Acta, 1837, 418-426,
doi:10.1016/j.bbabio.2013.10.004.
27. Dudkina, N.V., Kouřil,R., Peters,K., Braun, H.-P., and
Boekema, E.J. (2010) Structure and function of mito-
chondrial supercomplexes, Biochim. Biophys. Acta,
1797, 664-670, doi:10.1016/j.bbabio.2009.12.013.
28. Bultema, J. B., Braun, H.-P., Boekema, E. J., and Kou-
ril, R. (2009) Megacomplex organization of the oxi-
dative phosphorylation system by structural anal-
ysis of respiratory supercomplexes from potato,
Biochim. Biophys. Acta, 1787, 60-67, doi: 10.1016/
j.bbabio.2008.10.010.
29. Dudkina, N. V., Kudryashev, M., Stahlberg, H., and
Boekema, E. J. (2011) Interaction of complexes I,
III, and IV within the bovine respirasome by sin-
gle particle cryoelectron tomography, Proc. Natl.
Acad. Sci. USA, 108, 15196-15200, doi: 10.1073/pnas.
1107819108.
30. Mühleip, A., Flygaard, R. K., Baradaran, R., Haapa-
nen, O., Gruhl, T., Tobiasson, V., Maréchal, A., Shar-
ma,V., and Amunts, A. (2023) Structural basis of mi-
tochondrial membrane bending by the I-II-III2-IV2 su-
percomplex, Nature, 615, 934-938, doi:10.1038/s41586-
023-05817-y.
31. Guo,R., Zong,S., Wu,M., Gu,J., and Yang, M. (2017)
Architecture of human mitochondrial respirato-
ry megacomplex I2III2IV2, Cell, 170, 1247-1257.e12,
doi:10.1016/j.cell.2017.07.050.
32. Gu, J., Wu, M., Guo, R., Yan, K., Lei, J., Gao, N., and
Yang, M. (2016) The architecture of the mammali-
an respirasome, Nature, 537, 639-643, doi: 10.1038/
nature19359.
33. Vercellino,I., and Sazanov, L.A. (2021) Structure and
assembly of the mammalian mitochondrial super-
complex CIII2CIV, Nature, 598, 364-367, doi: 10.1038/
s41586-021-03927-z.
34. Klusch,N., Dreimann,M., Senkler,J., Rugen,N., Kühl-
brandt, W., and Braun, H.-P. (2023) Cryo-EM struc-
ture of the respiratory I + III2 supercomplex from
Arabidopsis thaliana at 2 Å resolution, Nat Plants., 9,
142-156, doi:10.1038/s41477-022-01308-6.
35. Kühlbrandt, W. (2015) Structure and function of mi-
tochondrial membrane protein complexes, BMC Biol.,
13, 89, doi:10.1186/s12915-015-0201-x.
36. Strauss, M., Hofhaus, G., Schröder, R. R., and Kühl-
brandt, W. (2008) Dimer ribbons of ATP synthase
shape the inner mitochondrial membrane, EMBO J.,
27, 1154-1160, doi:10.1038/emboj.2008.35.
37. Garab, G., Yaguzhinsky, L. S., Dlouhý, O., Nesterov,
S. V., Špunda, V., and Gasanoff, E. S. (2022) Structur-
al and functional roles of non-bilayer lipid phases
of chloroplast thylakoid membranes and mitochon-
drial inner membranes, Prog. Lipid. Res., 86, 101163,
doi:10.1016/j.plipres.2022.101163.
38. Gasanov, S. E., Kim, A. A., Yaguzhinsky, L. S., and
Dagda, R. K. (2018) Non-bilayer structures in mito-
chondrial membranes regulate ATP synthase activity,
Biochim. Biophys. Acta, 1860, 586-599, doi: 10.1016/
j.bbamem.2017.11.014.
39. Paradies, G., Paradies, V., De Benedictis, V., Ruggiero,
F.M., and Petrosillo,G. (2014) Functional role of cardio-
lipin in mitochondrial bioenergetics, Biochim. Biophys.
Acta, 1837, 408-417, doi:10.1016/j.bbabio.2013.10.006.
40. Epremyan, K.K., Goleva, T.N., Rogov, A.G., Lavrushki-
na, S.V., Zinovkin, R.A., and Zvyagilskaya, R.A. (2022)
The first Yarrowia lipolytica yeast models expressing