CINNAMATE REDUCTASE OF V. ruber 255
BIOCHEMISTRY (Moscow) Vol. 89 No. 2 2024
clostridia and some observations on the amino acid
fermentation by Peptostreptococcus anaerobius, Arch.
Microbiol., 135, 51-57, doi:10.1007/BF00419482.
11. Mordaka, P.M., Hall, S.J., Minton,N., and Stephens,G.
(2018) Recombinant expression and characterisa-
tion of the oxygen-sensitive 2-enoate reductase from
Clostridium sporogenes, Microbiology (Reading), 164,
122-132, doi:10.1099/mic.0.000568.
12. Shieh, W.Y., Chen, Y.W., Chaw, S.M., and Chiu, H.H.
(2003) Vibrio ruber sp. nov., a red, facultatively an-
aerobic, marine bacterium isolated from sea water,
Int. J. Syst. Evol. Microbiol., 53, 479-484, doi: 10.1099/
ijs.0.02307-0.
13. Bogachev, A.V., Bertsova, Y.V., Bloch, D.A., and Verk-
hovsky, M. I. (2012) Urocanate reductase: Identifi-
cation of a novel anaerobic respiratory pathway
in Shewanella oneidensis MR-1, Mol. Microbiol., 86,
1452-1463, doi:10.1111/mmi.12067.
14. Light, S.H., Méheust,R., Ferrell, J.L., Cho,J., Deng,D.,
Agostoni,M., Iavarone, A. T., Banfield, J.F., D’Orazio,
S.E.F., and Portnoy, D.A. (2019) Extracellular electron
transfer powers flavinylated extracellular reductases
in Gram-positive bacteria, Proc. Natl. Acad. Sci. USA,
116, 26892-26899, doi:10.1073/pnas.1915678116.
15. Bogachev, A. V., Baykov, A. A., and Bertsova, Y. V.
(2018) Flavin transferase: the maturation factor of fla-
vin-containing oxidoreductases, Biochem. Soc. Trans.,
46, 1161-1169, doi:10.1042/BST20180524.
16. Koike,H., Sasaki,H., Kobori,T., Zenno,S., Saigo,K., Mur-
phy, M.E., Adman, E.T., and Tanokura,M. (1998) 1.8 Å
crystal structure of the major NAD(P)H:FMN oxidore-
ductase of a bioluminescent bacterium, Vibrio fischeri:
overall structure, cofactor and substrate-analog bind-
ing, and comparison with related flavoproteins, J.Mol.
Biol., 280, 259-273, doi:10.1006/jmbi.1998.1871.
17. Bertsova, Y. V., Kulik, L. V., Mamedov, M. D., Baykov,
A.A., and Bogachev, A. V. (2019) Flavodoxin with an
air-stable flavin semiquinone in a green sulfur bac-
terium, Photosynth. Res., 142, 127-136, doi: 10.1007/
s11120-019-00658-1.
18. Bertsova, Y. V., Fadeeva, M. S., Kostyrko, V. A., Sere-
bryakova, M. V., Baykov, A. A., and Bogachev, A. V.
(2013) Alternative pyrimidine biosynthesis protein
ApbE is a flavin transferase catalyzing covalent attach-
ment of FMN to a threonine residue in bacterial flavo-
proteins, J.Biol. Chem., 288, 14276-14286, doi:10.1074/
jbc.M113.455402.
19. Laemmli, U.K. (1970) Cleavage of structural proteins
during the assembly of the head of bacteriophageT4,
Nature, 227, 680-685, doi:10.1038/227680a0.
20. Ells, A.H. (1959) A colorimetric method for the assay
of soluble succinic dehydogenase and pyridinenucle-
otide-linked dehydrogenases, Arch. Biochem. Biophys.,
85, 561-562, doi:10.1016/0003-9861(59)90527-2.
21. Jumper,J., Evans,R., Pritzel,A., Green,T., Figurnov,M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
Žídek,A., Potapenko,A., Bridgland,A., Meyer,C., Kohl,
S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B.,
Nikolov,S., Jain,R., Adler,J., Back,T., Petersen,S., Rei-
man,D., Clancy,E., Zielinski,M., Steinegger,M., Pachol-
ska, M., Berghammer, T., Bodenstein, S., Silver, D.,
Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P.,
and Hassabis,D. (2021) Highly accurate protein struc-
ture prediction with AlphaFold, Nature, 596
, 583-589,
doi:10.1038/s41586-021-03819-2.
22. Mirdita,M., Schütze,K., Moriwaki,Y., Heo,L., Ovchin-
nikov, S., and Steinegger, M. (2022) ColabFold: mak-
ing protein folding accessible to all, Nat. Meth., 19,
679-682, doi:10.1038/s41592-022-01488-1.
23. Trott, O., and Olson, A. J. (2010) AutoDock Vina: im-
proving the speed and accuracy of docking with a
new scoring function, efficient optimization, and mul-
tithreading, J.Comput. Chem., 31, 455-461, doi:10.1002/
jcc.21334.
24. Case, D.A., Aktulga, H.M., Belfon, K., Ben-Shalom, I. Y.,
Berryman, J.T., Brozell, S.R., etal. (2022) Amber 2022,
University of California, San Francisco.
25. Bolanos-Garcia, V.M., and Davies, O.R. (2006) Structur-
al analysis and classification of native proteins from
E. coli commonly co-purified by immobilised metal
affinity chromatography, Biochim. Biophys. Acta, 1760,
1304-1313, doi:10.1016/j.bbagen.2006.03.027.
26. Bertsova, Y.V., Serebryakova, M.V., Baykov, A.A., and
Bogachev, A.V. (2021) The flavin transferase ApbE fla-
vinylates the ferredoxin:NAD
+
-oxidoreductase Rnf re-
quired for N
2
fixation in Azotobacter vinelandii, FEMS
Microbiol. Lett., 368, fnab130, doi: 10.1093/femsle/
fnab130.
27. Hertzberger, R., Arents, J., Dekker, H. L., Pridmore,
R.D., Gysler,C., Kleerebezem,M., and de Mattos, M.J.
(2014) H
2
O
2
production in species of the Lactobacillus
acidophilus group: a central role for a novel NADH-
dependent flavin reductase, Appl. Environ. Microbiol.,
80, 2229-2239, doi:10.1128/AEM.04272213.
28. Kim,S., Kim, C.M., Son, Y.J., Choi, J.Y., Siegenthaler,
R.K., Lee,Y., Jang, T.H., Song,J., Kang,H., Kaiser, C.A.,
and Park, H. H. (2018) Molecular basis of maintain-
ing an oxidizing environment under anaerobiosis by
soluble fumarate reductase, Nat. Commun., 9, 4867,
doi:10.1038/s41467-018-07285-9.
29. Agarwal, R., Bonanno, J. B., Burley, S. K., and Swa-
minathan, S. (2006) Structure determination of
an FMN reductase from Pseudomonas aeruginosa
PA01 using sulfur anomalous signal, Acta Crystal-
logr. D Biol. Crystallogr., 62, 383-391, doi: 10.1107/
S0907444906001600.
30. Borshchevskiy, V., Round, E., Bertsova, Y., Polo-
vinkin, V., Gushchin, I., Ishchenko, A., Kovalev, K.,
Mishin, A., Kachalova, G., Popov, A., Bogachev, A.,
and Gordeliy, V. (2015) Structural and functional in-
vestigation of flavin binding center of the NqrC sub-
unit of sodium-translocating NADH:quinone oxidore-