MITOCENTRICITY 237
BIOCHEMISTRY (Moscow) Vol. 89 No. 2 2024
detection, Methods, 9, 563-577, doi: 10.1006/meth.
1996.0064.
103. Skulachev, V. P. (2005) How to clean the dirtiest
place in the cell: cationic antioxidants as intramito-
chondrial ROS scavengers, IUBMB Life, 57, 305-310,
doi:10.1080/15216540500092161.
104. Dröge, W. (2002) Free radicals in the physiologi-
cal control of cell function, Physiol. Rev., 82, 47-95,
doi:10.1152/physrev.00018.2001.
105. Michaelis, L. (1946) Fundamentals of oxidation and
respiration, Am. Sci., 34, 573-596.
106. Gerschman,R., Gilbert, D.L., Nye, S.W., Dwyer,P., and
Fenn, W. O. (1954) Oxygen poisoning and X-irradia-
tion: a mechanism in common, Science, 119, 623-626,
doi:10.1126/science.119.3097.623.
107. Harman,D. (1995) Aging: a theory based on free rad-
ical and radiation chemistry, J.Gerontol., 11, 298-300,
doi:10.1093/geronj/11.3.298.
108. Franceschi, C. (1989) Cell proliferation, cell death
and aging, Aging Clin. Exp. Res., 1, 3-15, doi:10.1007/
BF03323871.
109. Franceschi, C., Bonafe, M., Valensis, S., Oliveri, F., De
Luca, M., Ottaviani, E., and De Benedictis, G. (2000)
Inflamm-aging: an evolutionary perspective on im-
munosenescence, Ann. N Y Acad. Sci., 908, 244-254,
doi:10.1111/j.1749-6632.2000.tb06651.x.
110. Franceschi,C., Garagnani,P., Vitale,G., Capri,M., and
Salvioli, S. (2017) Inflammaging and ‘Garb-Aging’,
Trends Endocrinol. Metab., 28, 199-212, doi: 10.1016/
j.tem.2016.09.005.
111. Ferrucci, L., and Fabbri, E. (2018) Inflammageing:
chronic inflammation in ageing, cardiovascular
disease, and frailty, Nat. Rev. Cardiol., 15, 505-522,
doi:10.1038/s41569-018-0064-2.
112. Zhang,Q., Raoof,M., Chen,Y., Sumi,Y., Sursal,T., Jung-
er, W., Brohi, K., Itagaki, K., and Hauser, C. J. (2010)
Circulating mitochondrial DAMPs cause inflammatory
responses to injury, Nature, 464, 104-107, doi:10.1038/
nature08780.
113. Pinti, M., Cevenini, E., Nasi, M., De Biasi, S., Salvio-
li, S., Monti, D., Benatti, S., Gibellini, L., Cotichini, R.,
Stazi, M. A., Trenti, T., Franceschi, C., and Cossariz-
za, A. (2014) Circulating mitochondrial DNA increas-
es with age and is a familiar trait: implications for
“inflamm-aging”, Eur. J Immunol., 44, 1552-1562,
doi:10.1002/eji.201343921.
114. Shimada, K., Crother, T. R., Karlin, J., Dagvadorj, J.,
Chiba, N., Chen, S., Ramanujan, V. K., Wolf, A. J.,
Vergnes,L., Ojcius, D.M., Rentsendorj,A., Vargas,M.,
Guerrero, C., Wang, Y., Fitzgerald, K. A., Underhill,
D. M., Town, T., and Arditi, M. (2012) Oxidized mito-
chondrial DNA activates the NLRP3 inflammasome
during apoptosis, Immunity, 36, 401-414, doi:10.1016/
j.immuni.2012.01.009.
115. Iyer, S. S., He, Q., Janczy, J. R., Elliott, E. I., Zhong, Z.,
Olivier, A.K., Sadler, J.J., Knepper-Adrian,V., Han,R.,
Qiao,L., Eisenbarth, S.C., Nauseef, W.M., Cassel, S.L.,
and Sutterwala, F.S. (2013) Mitochondrial cardiolipin
is required for Nlrp3 inflammasome activation, Immu-
nity, 39, 311-323, doi:10.1016/j.immuni.2013.08.001.
116. Zorov, D.B., Bannikova, S.Y., Belousov, V.V., Vyssoki-
kh, M. Y., Zorova, L. D., Isaev, N. K., Krasnikov, B. F.,
and Plotnikov, E.Y. (2005) Reactive oxygen and nitro-
gen species: friends or foes? Biochemistry (Moscow),
70, 215-221, doi:10.1007/s10541-005-0103-6.
117. Boveris,A., Oshino,N., and Chance,B. (1972) The cel-
lular production of hydrogen peroxide, Biochem. J.,
128, 617-630, doi:10.1042/bj1280617.
118. Korshunov, S. S., Skulachev, V. P., and Starkov, A. A.
(1997) High protonic potential actuates a mecha-
nism of production of reactive oxygen species in
mitochondria, FEBS Lett., 416, 15-18, doi: 10.1016/
S0014-5793(97)01159-9.
119. Vyssokikh, M.Y., Holtze,S., Averina, O.A., Lyamzaev,
K.G., Panteleeva, A. A., Marey, M.V., Zinovkin, R. A.,
Severin, F.F., Skulachev, M.V., Fasel,N., Hildebrandt,
T.B., and Skulachev, V.P. (2020) Mild depolarization of
the inner mitochondrial membrane is a crucial com-
ponent of an anti-aging program, Proc. Natl. Acad. Sci.
USA, 117, 6491-6501, doi:10.1073/pnas.1916414117.
120. Plotnikov, E. Y., Silachev, D. N., Jankauskas, S. S.,
Rokitskaya, T.I., Chupyrkina, A.A., Pevzner, I.B., Zo-
rova, L. D., Isaev, N. K., Antonenko, Y. N., Skulachev,
V. P., and Zorov, D. B. (2012) Mild uncoupling of res-
piration and phosphorylation as a mechanism provid-
ing nephro- and neuroprotective effects of penetrat-
ing cations of the SkQ family, Biochemistry (Moscow),
77, 1029-1037, doi:10.1134/S0006297912090106.
121. Skulachev, V. P. (1991) Fatty acid circuit as a physio-
logical mechanism of uncoupling of oxidative phos-
phorylation, FEBS Lett., 294, 158-162, doi: 10.1016/
0014-5793(91)80658-P.
122. Isaev, N.K., Zorov, D.B., Stelmashook, E.V., Uzbekov,
R. E., Kozhemyakin, M. B., and Victorov, I. V. (1996)
Neurotoxic Glutamate treatment of cultured cerebel-
lar granule cells induces Ca
2+
-dependent collapse of
mitochondrial membrane potential and ultrastruc-
tural alterations of mitochondria, FEBS Lett., 392,
143-147, doi:10.1016/0014-5793(96)00804-6.
123. Weidinger,A., Milivojev,N., Hosmann,A., Duvigneau,
J. C., Szabo, C., Törö, G., Rauter, L., Vaglio-Garro, A.,
Mkrtchyan, G. V., Trofimova, L., Sharipov, R. R., Su-
rin, A.M., Krasilnikova, I.A., Pinelis, V.G., Tretter,L.,
Moldzio, R., Bayır, H., Kagan, V. E., Bunik, V. I., and
Kozlov, A.V. (2023) Oxoglutarate dehydrogenase com-
plex controls glutamate-mediated neuronal death, Re-
dox Biol., 62, 102669, doi:10.1016/j.redox.2023.102669.
124. Li,X., and May, J. M. (2002) Catalase-dependent mea-
surement of H
2
O
2
in intact mitochondria, Mitochondri-
on, 1, 447-453, doi:10.1016/S1567-7249(02)00010-7.
125. Palma, F. R., He, C., Danes, J. M., Paviani, V., Coel-
ho, D. R., Gantner, B. N., and Bonini, M. G. (2020)