ANTIBACTERIAL PROPERTIES OF SkQs 221
BIOCHEMISTRY (Moscow) Vol. 89 No. 2 2024
13. Zorov, D.B., Andrianova, N. V., Babenko, V. A., Pevz-
ner, I. B., Popkov, V. A., Zorov, S. D., Zorova, L. D.,
Plotnikov, E. Y., Sukhikh, G. T., and Silachev, D. N.
(2021) Neuroprotective potential of mild uncoupling
in mitochondria. Pros and cons, Brain Sci., 11, 1050,
doi:10.3390/brainsci11081050.
14. Shabalina, I. G., and Nedergaard, J. (2011) Mitochon-
drial (‘mild’) uncoupling and ROS production: phys-
iologically relevant or not? Biochem Soc Trans., 39,
1305-1309, doi:10.1042/BST0391305.
15. Starkov, A. A. (1997) “Mild” uncoupling of mito-
chondria, Biosci. Rep., 17, 273-279, doi: 10.1023/
a:1027380527769.
16. Korshunov, S. S., Skulachev, V. P., and Starkov, A. A.
(1997) High protonic potential actuates a mecha-
nism of production of reactive oxygen species in
mitochondria, FEBS Lett., 416, 15-18, doi: 10.1016/
s0014-5793(97)01159-9.
17. Severin, F.F., Severina, I.I., Antonenko, Y.N., Rokitska-
ya, T.I., Cherepanov, D.A., Mokhova, E.N., Vyssokikh,
M. Y., Pustovidko, A. V., Markova, O.V., Yaguzhinsky,
L.S., Korshunova, G.A., Sumbatyan, N.V., Skulachev,
M. V., and Skulachev, V. P. (2010) Penetrating cation/
fatty acid anion pair as a mitochondria-targeted pro-
tonophore, Proc. Natl. Acad. Sci. USA, 107, 663-668,
doi:10.1073/pnas.0910216107.
18. Anisimov, V.N., Egorov, M.V., Krasilshchikova, M.S.,
Lyamzaev, K.G., Manskikh, V.N., Moshkin, M.P., No-
vikov, E.A., Popovich, I.G., Rogovin, K.A., Shabalina,
I.G., Shekarova, O.N., Skulachev, M. V., Titova, T. V.,
Vygodin, V.A., Vyssokikh, M.Y., Yurova, M. N., Zabe-
zhinsky, M. A., and Skulachev, V. P. (2011) Effects of
the mitochondria-targeted antioxidant SkQ1 on lifes-
pan of rodents, Aging, 3, 1110-1119, doi: 10.18632/
aging.100404.
19. Khailova, L.S., Nazarov, P.A., Sumbatyan, N.V., Kor-
shunova, G. A., Rokitskaya, T. I., Dedukhova, V. I.,
Antonenko, Y. N., and Skulachev, V. P. (2015) Uncou-
pling and toxic action of alkyltriphenylphospho-
nium cations on mitochondria and the bacterium
Bacillus subtilis as a function of alkyl chain length,
Biochemistry (Moscow), 80, 1589-1597, doi: 10.1134/
S000629791512007X.
20. Nazarov, P.A., Osterman, I.A., Tokarchuk, A.V., Kara-
kozova, M. V., Korshunova, G. A., Lyamzaev, K. G.,
Skulachev, M. V., Kotova, E. A., Skulachev, V. P., and
Antonenko, Y.N. (2017) Mitochondria-targeted antiox-
idants as highly effective antibiotics, Sci. Rep., 7, 1394,
doi:10.1038/s41598-017-00802-8.
21. Nazarov, P.A., Kotova, E.A., Skulachev, V.P., and An-
tonenko, Y. N. (2019) Genetic variability of the Acr-
AB-TolC multidrug efflux pump underlies SkQ1 re-
sistance in gram-negative bacteria, Acta Naturae, 11,
93-98, doi:10.32607/20758251-2019-11-4-93-98.
22. Nazarov, P.A., Sorochkina, A.I., and Karakozova, M.V.
(2020) New functional criterion for evaluation of ho-
mologous MDR pumps, Front. Microbiol., 11, 592283,
doi:10.3389/fmicb.2020.592283.
23. Churilov, M. N., Denisenko, Y. V., Batyushin, M. M.,
Bren, A. B., and Chistyakov, V. A. (2018) Prospects of
SkQ1 (10-(6’-plastoquinoyl) decyltriphenylphosphoni-
um) application for prevention of oral cavity diseases,
Rasayan J. Chem., 11, 1594-1603.
24. Nazarov, P.A., Majorov, K.B., Apt, A.S., and Skulachev,
M.V. (2023) Penetration of triphenylphosphonium de-
rivatives through the cell envelope of bacteria of My-
cobacteriales order, Pharmaceuticals (Basel), 16, 688,
doi:10.3390/ph16050688.
25. Nazarov, P.A., Kirsanov, R.S., Denisov, S.S., Khailova,
L.S., Karakozova, M.V., Lyamzaev, K.G., Korshunova,
G.A., Lukyanov, K. A., Kotova, E.A., and Antonenko,
Y. N. (2020) Fluorescein derivatives as antibacterial
agents acting via membrane depolarization, Biomole-
cules, 10, 309, doi:10.3390/biom10020309.
26. Pavlova, J. A., Khairullina, Z. Z., Tereshchenkov,
A.G., Nazarov, P.A., Lukianov, D.A., Volynkina, I.A.,
Skvortsov, D.A., Makarov, G.I., Abad,E., Murayama,
S.Y., Kajiwara,S., Paleskava,A., Konevega, A.L., An-
tonenko, Y.N., Lyakhovich,A., Osterman, I.A., Bogdan-
ov, A.A., and Sumbatyan, N.V. (2021) Triphenilphos-
phonium analogs of chloramphenicol as dual-acting
antimicrobial and antiproliferating agents, Antibiotics
(Basel), 10, 489, doi:10.3390/antibiotics10050489.
27. Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E.,
Chernyak, B.V., Chertkov, V.A., Domnina, L.V., Ivano-
va, O.Y., Izyumov, D.S., Khailova, L.S., Klishin, S.S.,
Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S.,
Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushki-
na, O.Y., Pustovidko, A.V., Roginsky, V.A., Rokitskaya,
T. I., Ruuge, E. K., Saprunova, V.B., Severina, I.I., Si-
monyan, R.A., Skulachev, I.V., Skulachev, M.V., Sum-
batyan, N.V., Sviryaeva, I.V., Tashlitsky, V.N., Vassiliev,
J.M., Vyssokikh, M.Y., Yaguzhinsky, L.S., Zamyatnin,
A.A.,Jr., and Skulachev, V.P. (2008) Mitochondria-tar-
geted plastoquinone derivatives as tools to interrupt
execution of the aging program. 1. Cationic plas-
toquinone derivatives: synthesis and invitro studies,
Biochemistry (Moscow), 73, 1273-1287, doi: 10.1134/
s0006297908120018.
28. Korshunova, G. A., Shishkina, A. V., and Skulachev,
M. V. (2017) Design, synthesis, and some aspects
of the biological activity of mitochondria-targeted
antioxidants, Biochemistry (Moscow), 82, 760-777,
doi:10.1134/S0006297917070021.
29. Baba,T., Ara,T., Hasegawa,M., Takai,Y., Okumura,Y.,
Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L.,
and Mori, H. (2006) Construction of Escherichia coli
K-12 in-frame, single-gene knockout mutants: the Keio
collection, Mol. Syst. Biol., 2, 2006.0008, doi: 10.1038/
msb4100050.
30. Clinical and Laboratory Standards Institute (CLSI)
(2012) Methods for Dilution Antimicrobial Suscepti-