ROLE OF MITOCHONDRIA IN YEAST AGING 2003
BIOCHEMISTRY (Moscow) Vol. 88 Nos. 12-13 2023
7. Bouklas, T., and Fries, B. C. (2015) Aging as an emer-
gent factor that contributes to phenotypic variation in
Cryptococcus neoformans, Fungal Genet. Biol., 78, 59-64,
doi:10.1016/j.fgb.2014.10.004.
8. Laun, P., Bruschi, C. V., Dickinson, J. R., Rinnerthal-
er,M., Heeren, G., Schwimbersky, R., Rid, R., and Bre-
itenbach, M. (2007) Yeast mother cell-specific ageing, ge-
netic (in)stability, and the somatic mutation theory of age-
ing, Nucleic Acids Res., 35, 7514-7526, doi:10.1093/nar/
gkm919.
9. Barros, M. H., da Cunha, F. M., Oliveira, G. A., Tahara,
E.B., and Kowaltowski, A.J. (2010) Yeast as a model to
study mitochondrial mechanisms in ageing, Mech. Ageing
Dev., 131, 494-502, doi:10.1016/j.mad.2010.04.008.
10. Jazwinski, S. M., Jiang, J. C., and Kim, S. (2018) Ad-
aptation to metabolic dysfunction during aging: making
the best of a bad situation, Exp. Gerontol., 107, 87-90,
doi:10.1016/j.exger.2017.07.013.
11. Botstein, D., and Fink, G. R. (2011) Yeast: an experi-
mental organism for 21st Century biology, Genetics, 189,
695-704, doi:10.1534/genetics.111.130765.
12. Campos, S. E., and DeLuna, A. (2019) Functional ge-
nomics of dietary restriction and longevity in yeast, Mech.
Ageing Dev., 179, 36-43, doi:10.1016/j.mad.2019.02.003.
13. Novarina, D., Janssens, G. E., Bokern, K., Schut, T.,
van Oerle, N. C., Kazemier, H. G., Veenhoff, L. M., and
Chang, M. (2020) Agenome-wide screen identifies genes
that suppress the accumulation of spontaneous mutations
in young and aged yeast cells, Aging Cell, 19, e13084,
doi:10.1111/acel.13084.
14. Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming,
D. W., Lavu, S., Wood, J. G., Zipkin, R. E., Chung, P.,
Kisielewski, A., Zhang, L.-L., Scherer, B., and Sinclair,
D. A. (2003) Small molecule activators of sirtuins extend
Saccharomyces cerevisiae lifespan, Nature, 425, 191-196,
doi:10.1038/nature01960.
15. Okamoto, N., Sato, Y., Kawagoe, Y., Shimizu, T., and
Kawamura, K. (2022) Short-term resveratrol treatment
restored the quality of oocytes in aging mice, Aging, 14,
5628-5640, doi:10.18632/aging.204157.
16. McCormick, M. A., Delaney, J. R., Tsuchiya, M.,
Tsuchiyama, S., Shemorry, A., Sim, S., Chou, A. C.-Z.,
Ahmed,U., Carr, D., Murakami, C. J., Schleit, J., Sut-
phin, G. L., Wasko, B. M., Bennett, C. F., Wang, A. M.,
Olsen, B., Beyer, R. P., Bammler, T. K., Prunkard, D.,
Johnson, S. C., Pennypacker, J. K., An, E., Anies, A.,
Castanza, A. S., Choi, E., Dang, N., Enerio, S., Fletch-
er,M., Fox, L., Goswami, S., Higgins, S. A., Holmberg,
M. A., Hu, D., Hui, J., Jelic, M., Jeong, K.-S., John-
ston, E., Kerr, E. O., Kim, J., Kim, D., Kirkland, K.,
Klum, S., Kotireddy, S., Liao, E., Lim, M., Lin, M. S.,
Lo, W. C., Lockshon, D., Miller, H. A., Moller, R. M.,
Muller, B., Oakes, J., Pak, D. N., Peng, Z. J., Pham,
K. M., Pollard, T. G., Pradeep, P., Pruett, D., Rai, D.,
Robison, B., Rodriguez, A. A., Ros, B., Sage, M., Singh,
M. K., Smith, E. D., Snead, K., Solanky, A., Spec-
tor, B. L., Steffen, K. K., Tchao, B. N., Ting, M. K.,
Vander Wende, H., Wang, D., Welton, K. L., Westman,
E. A., Brem, R. B., Liu, X. G., Suh, Y., Zhou, Z., Kae-
berlein,M., and Kennedy, B. K. (2015) Acomprehensive
analysis of replicative lifespan in 4,698 single-gene dele-
tion strains uncovers conserved mechanisms of aging, Cell.
Metab., 22, 895-906, doi:10.1016/j.cmet.2015.09.008.
17. Smith, E. D., Tsuchiya, M., Fox, L. A., Dang, N.,
Hu,D., Kerr, E. O., Johnston, E. D., Tchao, B. N., Pak,
D. N., Welton, K. L., Promislow, D. E. L., Thomas, J.H.,
Kaeberlein, M., and Kennedy, B. K. (2008) Quantitative
evidence for conserved longevity pathways between di-
vergent eukaryotic species, Genome Res., 18, 564-570,
doi:10.1101/gr.074724.107.
18. He, C., Zhou, C., and Kennedy, B. K. (2018) Theyeast
replicative aging model, Biochim. Biophys. Acta Mol. Basis
Dis., 1864, 2690-2696, doi:10.1016/j.bbadis.2018.02.023.
19. Ashrafi, K., Sinclair, D., Gordon, J. I., and Guarente, L.
(1999) Passage through stationary phase advances repli-
cative aging in Saccharomyces cerevisiae, Proc. Natl. Acad.
Sci. USA, 96, 9100-9105, doi:10.1073/pnas.96.16.9100.
20. Knorre, D. A., Azbarova, A. V., Galkina, K. V., Feniouk,
B. A., and Severin, F. F. (2018) Replicative aging as a
source of cell heterogeneity in budding yeast, Mech. Ageing
Dev., 176, 24-31, doi:10.1016/j.mad.2018.09.001.
21. Janssens, G. E., Meinema, A. C., González, J., Wolters,
J. C., Schmidt, A., Guryev, V., Bischoff, R., Wit, E. C.,
Veenhoff, L. M., and Heinemann, M. (2015) Protein bio-
genesis machinery is a driver of replicative aging in yeast,
Elife, 4, e08527, doi:10.7554/eLife.08527.
22. Orner, E. P., Zhang, P., Jo, M. C., Bhattacharya, S.,
Qin, L., and Fries, B. C. (2019) High-throughput yeast
aging analysis for Cryptococcus (HYAAC) microfluidic de-
vice streamlines aging studies in Cryptococcus neoformans,
Commun. Biol., 2, 256, doi:10.1038/s42003-019-0504-5.
23. Yu, R., Jo, M. C., and Dang, W. (2020) Measuring the
replicative lifespan of Saccharomyces cerevisiae using the
HYAA microfluidic platform, Methods Mol. Biol., 2144,
1-6, doi:10.1007/978-1-0716-0592-9_1.
24. Jin, M., Li, Y., O’Laughlin, R., Bittihn, P., Pillus, L.,
Tsimring, L. S., Hasty, J., and Hao, N. (2019) Diver-
gent aging of isogenic yeast cells revealed through sin-
gle-cell phenotypic dynamics, Cell Syst., 8, 242-253.e3,
doi:10.1016/j.cels.2019.02.002.
25. Li, Y., Jiang, Y., Paxman, J., O’Laughlin, R., Klepin,S.,
Zhu, Y., Pillus, L., Tsimring, L. S., Hasty, J., and Hao,N.
(2020) A programmable fate decision landscape under-
lies single-cell aging in yeast, Science, 369, 325-329,
doi:10.1126/science.aax9552.
26. Atamna, H., Killilea, D. W., Killilea, A. N., and Ames,
B.N. (2002) Heme deficiency may be a factor in the mi-
tochondrial and neuronal decay of aging, Proc. Natl. Acad.
Sci. USA, 99, 14807-14812, doi:10.1073/pnas.192585799.
27. Xie, Z., Zhang, Y., Zou, K., Brandman, O., Luo, C.,
Ouyang, Q., and Li, H. (2012) Molecular phenotyp-
ing of aging in single yeast cells using a novel micro-