CHANGES IN THE GLUTAMATE/GABA SYSTEM 1985
BIOCHEMISTRY (Moscow) Vol. 88 Nos. 12-13 2023
31. Avila, J., Llorens-Martín, M., Pallas-Bazarra, N., Bo-
los,M., Perea, J. R., Rodríguez-Matellan, A., and Her-
nandez, F. (2017) Cognitive decline in neuronal aging and
Alzheimer’s disease: role of NMDA receptors and asso-
ciated proteins, Front. Neurosci., 11, 626, doi: 10.3389/
fnins.2017.00626.
32. Cercato, M. C., Vázquez, C. A., Kornisiuk, E., Aguirre,
A. I., Colettis, N., Snitcofsky, M., Jerusalinsky, D. A., and
Baez, M.V. (2017) GluN1 and GluN2A NMDA recep-
tor subunits increase in the hippocampus during memory
consolidation in the rat, Front. Behav. Neurosci., 10, 242,
doi:10.3389/fnbeh.2016.00242.
33. Ge, Y., and Wang, Y. T. (2023) GluN2B-containing
NMDARs in the mammalian brain: pharmacology, phys-
iology, and pathology, Front. Mol. Neurosci., 16, 1190324,
doi:10.3389/fnmol.2023.1190324.
34. Yeung, J. H. Y., Walby, J. L., Palpagama, T. H., Turn-
er, C., Waldvogel, H.J., Faull, R. L. M., and Kwakows-
ky, A. (2021) Glutamatergic receptor expression chang-
es in the Alzheimer’s disease hippocampus and ento-
rhinal cortex, Brain Pathol., 31, e13005, doi: 10.1111/
BPA.13005.
35. Qu, W., Yuan, B., Liu, J., Liu, Q., Zhang, X., Cui, R.,
Yang, W., and Li, B. (2021) Emerging role of AMPA recep-
tor subunit GluA1 in synaptic plasticity: implications for
Alzheimer’s disease, Cell Prolif., 54, e12959, doi:10.1111/
cpr.12959.
36. Li, Y., Sun, H., Chen, Z., Xu, H., Bu, G., and Zheng,H.
(2016) Implications of GABAergic neurotransmission
in Alzheimer’s disease, Front. Aging Neurosci., 8, 31,
doi:10.3389/fnagi.2016.00031.
37. Bi, D., Wen, L., Wu, Z., and Shen, Y. (2020) GABA-
ergic dysfunction in excitatory and inhibitory (E/I)
imbalance drives the pathogenesis of Alzheimer’s dis-
ease, Alzheimers Dement., 16, 1312-1329, doi: 10.1002/
alz.12088.
38. Lee, S. E., Lee, Y., and Lee, G. H. (2019) The regulation
of glutamic acid decarboxylases in GABA neurotrans-
mission in the brain, Arch. Pharm. Res., 42, 1031-1039,
doi:10.1007/s12272-019-01196-z.
39. Chattopadhyaya, B., Di Cristo, G., Wu, C. Z., Knott,G.,
Kuhlman, S., Fu, Y., Palmiter, R. D., and Huang, Z.
J. (2007) GAD67-mediated GABA synthesis and sig-
naling regulate inhibitory synaptic innervation in
the visual cortex, Neuron, 54, 889-903, doi: 10.1016/
j.neuron.2007.05.015.
40. Lau, C. G., and Murthy, V. N. (2012) Activity-dependent
regulation of inhibition via GAD67, J.Neurosci., 32, 8521-
8531, doi:10.1523/JNEUROSCI.1245-12.2012.
41. Sandhu, K. V., Lang, D., Müller, B., Nullmeier, S.,
Yanagawa, Y., Schwegler, H., and Stork, O. (2014) Glu-
tamic acid decarboxylase 67 haplodeficiency impairs so-
cial behavior in mice, Genes Brain Behav., 13, 439-450,
doi:10.1111/GBB.12131.
42. Kash, S. F., Johnson, R. S., Tecott, L. H., Noebels, J. L.,
Mayfield, R.D., Hanahan, D., and Baekkeskov, S. (1997)
Epilepsy in mice deficient in the 65-KDa isoform of glu-
tamic acid decarboxylase, Proc. Natl. Acad. Sci. USA, 94,
14060-14065, doi:10.1073/PNAS.94.25.14060.
43. Toritsuka, M., Yoshino, H., Makinodan, M., Ikawa, D.,
Kimoto, S., Yamamuro, K., Okamura, K., Akamatsu, W.,
Okada, Y., Matsumoto, T., Hashimoto, K., Ogawa, Y.,
Saito, Y., Watanabe, K., Aoki, C., Takada, R., Fuka-
mi, S. I., Hamano-Iwasa, K., Okano, H., and Kishimo-
to, T. (2021) Developmental dysregulation of excitato-
ry-to-inhibitory GABA-polarity switch may underlie
schizophrenia pathology: a monozygotic-twin discor-
dant case analysis in human IPS cell-derived neurons,
Neurochem. Int., 150, e105179, doi:10.1016/J.NEUINT.
2021.105179.
44. Benes, F. M., Lim, B., Matzilevich, D., Walsh, J. P., Sub-
buraju, S., and Minns, M. (2007) Regulation of the GABA
cell phenotype in hippocampus of schizophrenics and
bipolars, Proc. Natl. Acad. Sci. USA, 104, 10164-10169,
doi:10.1073/pnas.0703806104.
45. Lanoue, A. C., Dumitriu, A., Myers, R. H., Soghomo-
nian, J. J. (2010) Decreased glutamic acid decarboxy-
lase MRNA expression in prefrontal cortex in Parkin-
son’s disease, Exp. Neurol., 226, 207-217, doi: 10.1016/
j.expneurol.2010.09.001.
46. Wang, Y., Wu, Z., Bai, Y. T., Wu, G. Y., and Chen, G.
(2017) Gad67 haploinsufficiency reduces amyloid pathol-
ogy and rescues olfactory memory deficits in a mouse
model of Alzheimer’s disease, Mol. Neurodegener., 12, 73,
doi:10.1186/s13024-017-0213-9.
47. Ethiraj, J., Palpagama, T. H., Turner, C., van der Werf,B.,
Waldvogel, H. J., Faull, R. L. M., and Kwakowsky, A.
(2021) The effect of age and sex on the expression of
GABA signaling components in the human hippocampus
and entorhinal cortex, Sci. Rep., 11, 21470, doi:10.1038/
s41598-021-00792-8.
48. Krantic, S., Isorce, N., Mechawar, N., Davoli, M. A.,
Vignault, E., Albuquerque, M., Chabot, J.G., Moyse,E.,
Chauvin, J.P., Aubert, I., McLaurin, J., and Quirion,R.
(2012) Hippocampal GABAergic neurons are suscepti-
ble to amyloid-β Toxicity in vitro and are decreased in
number in the Alzheimer’s disease TgCRND8 mouse
model, J. Alzheimers Dis., 29, 293-308, doi: 10.3233/
JAD-2011-110830.
49. Ulrich, D. (2015) Amyloid-β impairs synaptic inhibition
via GABAA receptor endocytosis, J.Neurosci., 35, 9205-
9210, doi:10.1523/JNEUROSCI.0950-15.2015.
50. Palpagama, T. H., Sagniez, M., Kim, S., Waldvogel, H. J.,
Faull, R. L., and Kwakowsky, A. (2019) GABAA receptors
are well preserved in the hippocampus of aged mice, eNeu-
ro, 6, 1-13, doi:10.1523/ENEURO.0496-18.2019.
51. Rissman, R. A., and Mobley, W. C. (2011) Implications
for treatment: GABAA receptors in aging, down syndrome
and Alzheimer’s disease, J. Neurochem., 117, 613-622,
doi:10.1111/J.1471-4159.2011.07237.X.
52. Stefanova, N. A., Kozhevnikova, O. S., Vitovtov, A. O.,
Maksimova, K. Y., Logvinov, S. V., Rudnitskaya, E. A.,