RATUSHNYY, BURAVKOVA17 74
BIOCHEMISTRY (Moscow) Vol. 88 No. 11 2023
55. Duan, J. L., Ruan, B., Song, P., Fang, Z. Q., Yue, Z.S.,
Liu, J. J., Dou, G. R., Han, H., and Wang, L. (2022)
Shear stress-induced cellular senescence blunts liver re-
generation through Notch-sirtuin 1-P21/P16 axis, Hepa-
tology, 75, 584-599, doi:10.1002/hep.32209.
56. Van Loon, J. W. A. (2007) Some history and use of the
random positioning machine, RPM, in gravity related
research, Adv. Space Res., 39, 1161-1165, doi: 10.1016/
j.asr.2007.02.016.
57. Kopp, S., Warnke, E., Wehland, M., Aleshcheva, G.,
Magnusson, N. E., Hemmersbach, R., Corydon, T. J.,
Bauer, J., Infanger, M., and Grimm, D. (2015) Mecha-
nisms of three-dimensional growth of thyroid cells during
long-term simulated microgravity, Sci. Rep., 5, 16691,
doi:10.1038/srep16691.
58. Wuest, S. L., Richard, S., Kopp, S., Grimm, D., and
Egli, M. (2015) Simulated microgravity: critical review
on the use of random positioning machines for mam-
malian cell culture, BioMed Res. Int., 2015, 971474,
doi:10.1155/2015/971474.
59. Wang, J., Zhang, J., Bai, S., Wang, G., Mu, L., Sun, B.,
Wang, D., Kong, Q., Liu, Y., Yao, X., Xu, Y., and Li, H.
(2009) Simulated microgravity promotes cellular senes-
cence via oxidant stress in rat PC12 cells, Neurochem. Int.,
55, 710-716, doi:10.1016/j.neuint.2009.07.002.
60. Kapitonova, M. Y., Muid, S., Froemming, G. R., Yusoff,
W. N., Othman, S., Ali, A. M., and Nawawi, H. M. (2012)
Real space flight travel is associated with ultrastructural
changes, cytoskeletal disruption and premature senescence
of HUVEC, Malays.J. Pathol., 34, 103-113.
61. Ulbrich, C., Wehland, M., Pietsch, J., Aleshcheva, G.,
Wise, P., van Loon, J., Magnusson, N., Infanger, M.,
Grosse, J., Eilles, C., Sundaresan, A., and Grimm, D.
(2014) Theimpact of simulated and real microgravity on
bone cells and mesenchymal stem cells, BioMed Res. Int.,
2014, 928507, doi:10.1155/2014/928507.
62. Winkelmaier, G., Jabbari, K., Chien, L. C., Grabham, P.,
Parvin, B., and Pluth, J. (2023) Influence of simulated
microgravity on mammary epithelial cells grown as 2D
and 3Dcultures, Int.J. Mol. Sci., 24, 7615, doi:10.3390/
ijms24087615.
63. Ratushnyy, A., Ezdakova, M., Yakubets, D., and Bu-
ravkova, L. (2018) Angiogenic activity of human adi-
pose-derived mesenchymal stem cells under simulated
microgravity, Stem Cells Dev., 27, 831-837, doi:10.1089/
scd.2017.0262.
64. Ingber, D. E. (2003) Mechanobiology and diseas-
es of mechanotransduction, Ann. Med., 35, 564-577,
doi:10.1080/07853890310016333.
65. Louis, F., Deroanne, C., Nusgens, B., Vico, L., and Guig-
nandon, A. (2015) RhoGTPases as key players in mam-
malian cell adaptation to microgravity, BioMed Res. Int.,
2015, 747693, doi:10.1155/2015/747693.
66. Mao, X., Chen, Z., Luo, Q., Zhang, B., and Song, G.
(2016) Simulated microgravity inhibits the migration of
mesenchymal stem cells by remodeling actin cytoskeleton
and increasing cell stiffness, Cytotechnology, 68, 2235-
2243, doi:10.1007/s10616-016-0007-x.
67. Ratushnyy, A. Y., and Buravkova, L. B. (2017) Expression
of focal adhesion genes in mesenchymal stem cells under
simulated microgravity, Dokl. Biochem. Biophys., 477,
354-356, doi:10.1134/S1607672917060035.
68. Buravkova, L., Larina, I., Andreeva, E., and Grigoriev, A.
(2021) Microgravity effects on the matrisome, Cells,10,
2226, doi:10.3390/cells10092226.
69. Dinarelli, S., Longo, G., Dietler, G., Francioso, A.,
Mosca, L., Pannitteri, G., Boumis, G., Bellelli, A., and
Girasole, M. (2018) Erythrocyte’s aging in microgravity
highlights how environmental stimuli shape metabolism
and morphology, Sci. Rep., 8, 5277, doi:10.1038/s41598-
018-22870-0.
70. Takahashi, H., Nakamura, A., and Shimizu, T. (2021)
Simulated microgravity accelerates aging of human skel-
etal muscle myoblasts at the single cell level, Biochem.
Biophys. Res. Commun., 578, 115-121, doi:10.1016/j.bbrc.
2021.09.037.
71. Acharya, A., Nemade, H., Papadopoulos, S., Heschel-
er, J., Neumaier, F., Schneider, T., Rajendra Prasad, K.,
Khan, K., Hemmersbach, R., Gusmao, E.G., Mizi, A.,
Papantonis, A., and Sachinidis, A. (2022) Microgravi-
ty-induced stress mechanisms in human stem cell-de-
rived cardiomyocytes, iScience, 25, 104577, doi:10.1016/
j.isci.2022.104577.
72. Singh, R., Rajput, M., and Singh, R. P. (2021) Simulated
microgravity triggers DNA damage and mitochondria-me-
diated apoptosis through ROS generation in human pro-
myelocytic leukemic cells, Mitochondrion, 61, 114-124,
doi:10.1016/j.mito.2021.09.006.
73. Kossmehl, P., Shakibaei, M., Cogoli, A., Infanger, M.,
Curcio, F., Schönberger, J., Eilles, C., Bauer, J., Picken-
hahn, H., Schulze-Tanzil, G., Paul, M., and Grimm, D.
(2003) Weightlessness induced apoptosis in normal thy-
roid cells and papillary thyroid carcinoma cells via extrin-
sic and intrinsic pathways, Endocrinology, 144, 4172-4179,
doi:10.1210/en.2002-0171.
74. Ran, F., An, L., Fan, Y., Hang, H., and Wang, S. (2016)
Simulated microgravity potentiates generation of reac-
tive oxygen species in cells, Biophys. Rep., 2, 100-105,
doi:10.1007/s41048-016-0029-0.
75. Greco, O., Durante, M., Gialanella, G., Grossi, G.,
Pugliese, M., Scampoli, P., Snigiryova, G., and Obe, G.
(2003) Biological dosimetry in Russian and Italian as-
tronauts, Adv. Space Res., 31, 1495-1503, doi: 10.1016/
s0273-1177(03)00087-5.
76. Lu, T., Zhang, Y., Kidane, Y., Feiveson, A., Stodieck, L.,
Karouia, F., Ramesh, G., Rohde, L., and Wu, H. (2017)
Cellular responses and gene expression profile changes
due to bleomycin-induced DNA damage in human fi-
broblasts in space, PLoS One, 12, e0170358, doi:10.1371/
journal.pone.0170358.
77. Murphy, M. B., Moncivais, K., and Caplan, A. I. (2013)
Mesenchymal stem cells: environmentally responsive