THE VARIETY OF REVERSE TRANSCRIPTASES 1761
BIOCHEMISTRY (Moscow) Vol. 88 No. 11 2023
a protein component of an essential yeast telomerase, Cell,
60, 529-530, doi: 10.1016/0092-8674(90)90653-v.
26. Lingner, J., Hughes, T. R., Shevchenko, A., Mann, M.,
Lundblad, V., and Cech, T.R. (1997) Reverse transcrip-
tase motifs in the catalytic subunit of telomerase, Science,
276, 561-567, doi: 10.1126/science.276.5312.561.
27. Olovnikov, A. M. (1996) Telomeres, telomerase, and ag-
ing: origin of the theory, Exp. Gerontol., 31, 443-448,
doi: 10.1016/0531-5565(96)00005-8.
28. Arkhipova, I. R., Mazo, A. M., Cherkasova, V. A., Gore-
lova, T. V., Schuppe, N.G., and Ilyin, Y.V. (1986) The
steps of reverse transcription of Drosophila mobile genet-
ic elements and U3-R-U5 structure of their LTRs, Cell,
44, 555-563, doi: 10.1016/0092-8674(86)90265-5.
29. Krupovic, M., Blomberg, J., Coffin, J. M., Dasgup-
ta,I., Fan, H., Geering, A. D., Gifford, R., Harrach, B.,
Hull, R., Johnson, W., Kreuze, J. F., Lindemann, D.,
Llorens, C., Lockhart, B., Mayer, J., Muller, E., Olsze-
wski, N., Pappu, H. R., Pooggin, M., Richert-Poggeler,
K.R., etal. (2018) Ortervirales: A new viral order unifying
five families of reverse-transcribing viruses, J.Virol., 92,
e00515-18, doi: 10.1128/jvi.00515-18.
30. Paul, B. G., Yushenova, I. A., and Arkhipova, I.R. (2022)
The Diversity of Reverse Transcriptases. in Retrotransposons
and Human Disease (Gabriel, A., ed.) World Scientific,
Singapore, pp.1-28, doi:10.1142/9789811249228_0001.
31. Lambowitz, A. M., and Belfort, M. (2015) Mobile bacte-
rial group II introns at the crux of eukaryotic evolution,
Microbiol. Spectr., 3, doi: 10.1128/microbiolspec.MDNA3-
0050-2014.
32. Arkhipova, I. R., and Yushenova, I. A. (2019) Giant trans-
posons in eukaryotes: Is bigger better? Genome Biol. Evol.,
11, 906-918, doi: 10.1093/gbe/evz041.
33. Gao, L., Altae-Tran, H., Böhning, F., Makarova, K.S.,
Segel, M., Schmid-Burgk, J. L., Koob, J., Wolf, Y. I.,
Koonin, E. V., and Zhang, F. (2020) Diverse enzy-
matic activities mediate antiviral immunity in prokary-
otes, Science, 369, 1077-1084, doi: 10.1126/science.
aba0372.
34. Millman, A., Bernheim, A., Stokar-Avihail, A., Fe-
dorenko, T., Voichek, M., Leavitt, A., Oppenheimer-
Shaanan, Y., and Sorek, R. (2020) Bacterial retrons
function in anti-phage defense, Cell, 183, 1551-1561,
doi: 10.1016/j.cell.2020.09.065.
35. Bobonis, J., Mitosch, K., Mateus, A., Karcher, N., Kri-
tikos, G., Selkrig, J., Zietek, M., Monzon, V., Pfalz, B.,
Garcia-Santamarina, S., Galardini, M., Sueki, A., Ko-
bayashi, C., Stein, F., Bateman, A., Zeller, G., Savitski,
M.M., Elfenbein, J.R., Andrews-Polymenis, H.L., and
Typas, A. (2022) Bacterial retrons encode phage-defend-
ing tripartite toxin-antitoxin systems, Nature, 609, 144-
150, doi: 10.1038/s41586-022-05091-4.
36. Mestre, M. R., González-Delgado, A., Gutiérrez-Rus,
L.I., Martínez-Abarca, F., and Toro, N. (2020) System-
atic prediction of genes functionally associated with bac-
terial retrons and classification of the encoded tripartite
systems, Nucleic Acids Res., 48, 12632-12647, doi: 10.1093/
nar/gkaa1149.
37. Wang, Y., Guan, Z., Wang, C., Nie, Y., Chen, Y.,
Qian,Z., Cui, Y., Xu, H., Wang, Q., Zhao, F., Zhang,D.,
Tao, P., Sun, M., Yin, P., Jin, S., Wu, S., and Zou, T.
(2022) Cryo-EM structures of Escherichia coli Ec86 ret-
ron complexes reveal architecture and defence mecha-
nism, Nat. Microbiol., 7, 1480-1489, doi: 10.1038/s41564-
022-01197-7.
38. Guo, H., Arambula, D., Ghosh, P., and Miller, J. F.
(2014) Diversity-generating retroelements in phage and
bacterial genomes, Microbiol. Spectr., 2, MDNA3-0029-
2014, doi: 10.1128/microbiolspec.MDNA3-0029-2014.
39. Paul, B. G., Burstein, D., Castelle, C. J., Handa, S.,
Arambula, D., Czornyj, E., Thomas, B. C., Ghosh, P.,
Miller, J. F., Banfield, J. F., and Valentine, D.L. (2017)
Retroelement-guided protein diversification abounds in
vast lineages of Bacteria and Archaea, Nat. Microbiol.,
2, 17045, doi: 10.1038/nmicrobiol.2017.45.
40. Roux, S., Paul, B. G., Bagby, S. C., Nayfach, S., Allen,
M. A., Attwood, G., Cavicchioli, R., Chistoserdova,L.,
Gruninger, R. J., Hallam, S. J., Hernandez, M. E.,
Hess,M., Liu, W. T., McAllister, T. A., O’Malley, M. A.,
Peng, X., Rich, V. I., Saleska, S. R., and Eloe-Fadrosh,
E.A. (2021) Ecology and molecular targets of hypermu-
tation in the global microbiome, Nat. Commun., 12, 3076,
doi: 10.1038/s41467-021-23402-7.
41. Paul, B. G., and Eren, A. M. (2022) Eco-evolutionary
significance of domesticated retroelements in micro-
bial genomes, Mobile DNA, 13, 6, doi: 10.1186/s13100-
022-00262-6.
42. Fortier, L. C., Bouchard, J. D., and Moineau, S. (2005)
Expression and site-directed mutagenesis of the lactococ-
cal abortive phage infection protein AbiK, J. Bacteriol.,
187, 3721-3730, doi: 10.1128/jb.187.11.3721-3730.2005.
43. Lopatina, A., Tal, N., and Sorek, R. (2020) Abortive in-
fection: bacterial suicide as an antiviral immune strategy,
Annu. Rev. Virol., 7, 371-384, doi: 10.1146/annurev-virolo-
gy-011620-040628.
44. Wang, C., Villion, M., Semper, C., Coros, C., Moin-
eau, S., and Zimmerly, S. (2011) A reverse transcrip-
tase-related protein mediates phage resistance and polym-
erizes untemplated DNA in vitro, Nucleic Acids Res., 39,
7620-7629, doi: 10.1093/nar/gkr397.
45. Mestre, M. R., Gao, L. A., Shah, S. A., López-
Beltrán,A., González-Delgado, A., Martínez- Abarca,F.,
Iranzo, J., Redrejo-Rodríguez, M., Zhang, F., and
Toro,N. (2022) UG/Abi: a highly diverse family of pro-
karyotic reverse transcriptases associated with defense
functions, Nucleic Acids Res., 50, 6084-6101, doi: 10.1093/
nar/gkac467.
46. Figiel, M., Gapińska, M., Czarnocki-Cieciura, M., Za-
jko, W., Sroka, M., Skowronek, K., and Nowotny, M.
(2022) Mechanism of protein-primed template-indepen-
dent DNA synthesis by Abi polymerases, Nucleic Acids
Res., 50, 10026-10040, doi: 10.1093/nar/gkac772.