DYAKONOVA172 8
BIOCHEMISTRY (Moscow) Vol. 88 No. 11 2023
Cho, S., Kellis, M., and Tsai, L. H. (2015) Activity-
induced DNA breaks govern the expression of neuronal
early-response genes, Cell, 161, 1592-1605, doi:10.1016/
j.cell.2015.05.032.
8. Delint-Ramirez, I., Konada, L., Heady, L., Rueda, R.,
Jacome, A. S. V., Marlin, E., Marchioni, C., Segev, A.,
Kritskiy, O., Yamakawa, S., Reiter, A. H., Tsai, L. H.,
and Madabhushi, R. (2022) Calcineurin dephosphorylates
topoisomeraseIIβ and regulates the formation of neuro-
nal-activity-induced DNA breaks, Mol. Cell, 82, 3794-
3809.e8, doi:10.1016/j.molcel.2022.09.012.
9. Shadfar, S., Parakh, S., Jamali, M. S., and Atkin, J.D.
(2023) Redox dysregulation as a driver for DNA damage
and its relationship to neurodegenerative diseases, Transl.
Neurodegener., 12, 18, doi:10.1186/s40035-023-00350-4.
10. Wu, W., Hill, S. E., Nathan, W. J., Paiano, J., Cal-
len, E., Wang, D., Shinoda, K., van Wietmarschen, N.,
Colón-Mercado, J. M., Zong, D., De Pace, R., Shih,
H. Y., Coon, S., Parsadanian, M., Pavani, R., Hanzliko-
va, H., Park, S., Jung, S. K., McHugh, P. J., Canela,A.,
Chen, C., Casellas, R., Caldecott, K. W., Ward, M.E.,
and Nussenzweig, A. (2021) Neuronal enhancers are
hotspots for DNA single-strand break repair, Nature, 593,
440-444, doi:10.1038/s41586-021-03468-5.
11. Dileep, V., and Tsai, L.H. (2021) Neuronal enhancers get
a break, Neuron, 109, 1766-1768, doi: 10.1016/j.neuron.
2021.05.008.
12. Reid, D. A., Reed, P. J., Schlachetzki, J.C.M., Nitulescu,
I.I., Chou, G., Tsui, E.C., Jones, J. R., Chandran,S.,
Lu, A. T., McClain, C. A., Ooi, J. H., Wang, T.W., Lana,
A. J., Linker, S. B., Ricciardulli, A. S., Lau, S., Scha-
fer, S. T., Horvath, S., Dixon, J. R., Hah, N., Glass,
C.K., and Gage, F. H. (2021) Incorporation of a nucle-
oside analog maps genome repair sites in postmitotic hu-
man neurons, Science, 372, 91-94, doi: 10.1126/science.
abb9032.
13. Krushinskii, A. L. (2013) Biophysical aspects of cognitive
activity, in Formation of Animal Behavior in the Norm and
Pathology; 100th Anniversary of L. V. Krushinskii (1911-
1984), Languages of Slavic Culture (Poletaeva, I.I., and
Zorina, Z.A., eds.) Moscow, p.424-436.
14. Krushinskii, A. L. (2015) The cost of solution: biophysi-
cal prerequisites and possible evolutionary consequences,
Russ. Zhurn. Kognit. Nauki, 2, 52-61.
15. Navabpour, S., Rogers, J., McFadden, T., and Jarome,
T.J. (2020) DNA double-strand breaks are a critical reg-
ulator of fear memory reconsolidation, Int. J. Mol. Sci.,
21, 8995, doi:10.3390/ijms21238995.
16. Weber Boutros, S., Unni, V. K., and Raber, J. (2022) An
adaptive role for DNA double-strand breaks in hippocam-
pus-dependent learning and memory, Int. J. Mol. Sci.,
23, 8352, doi:10.3390/ijms23158352.
17. Konopka, A., and Atkin, J. D. (2022) The role of DNA
damage in neural plasticity in physiology and neurodegen-
eration, Front. Cell Neurosci., 16, 836885, doi: 10.3389/
fncel.2022.836885.
18. Welch, G., and Tsai, L. H. (2022) Mechanisms of DNA
damage-mediated neurotoxicity in neurodegenerative
disease, EMBO Rep., 23, e54217, doi: 10.15252/embr.
20215421.
19. Pollina, E. A., Gilliam, D. T., Landau, A.T., Lin, C., Pa-
jarillo, N., Davis, C.P., Harmin, D. A., Yap, E. L., Vo-
gel, I. R., Griffith, E. C., Nagy, M. A., Ling, E., Duffy,
E. E., Sabatini, B. L., Weitz, C.J., and Greenberg, M. E.
(2023) A NPAS4–NuA4 complex couples synaptic ac-
tivity to DNA repair, Nature, 614, 732-741, doi:10.1038/
s41586-023-05711-7.
20. Hazen, J. L., Faust, G. G., Rodriguez, A. R., Ferguson,
W. C., Shumilina, S., Clark, R. A., Boland, M. J., Mar-
tin, G., Chubukov, P., Tsunemoto, R. K., Torkamani, A.,
Kupriyanov, S., Hall, I. M., and Baldwin, K. K. (2016)
The complete genome sequences, unique mutational
spectra, and developmental potency of adult neurons re-
vealed by cloning, Neuron, 89, 1223-1236, doi: 10.
1016/
j.neuron.2016.02.004.
21. Evrony, G. D., Cai, X., Lee, E., Hills, L. B., Elhosa-
ry, P.C., Lehmann, H. S., Parker, J. J., Atabay, K. D.,
Gilmore, E. C., Poduri, A., Park, P. J., and Walsh, C. A.
(2012) Single-neuron sequencing analysis of L1 retrotrans-
position and somatic mutation in the human brain, Cell,
151, 483-496, doi:10.1016/j.cell.2012.09.035.
22. Bizzotto, S., and Walsh, C. A. (2022) Genetic mosa-
icism in the human brain: from lineage tracing to neuro-
psychiatric disorders, Nat. Rev. Neurosci., 23, 275-286,
doi:10.1038/s41583-022-00572-x.
23. Luquette, L. J., Miller, M. B., Zhou, Z., Bohrson,
C.L., Zhao, Y., Jin, H., Gulhan, D., Ganz, J., Bizzot-
to, S., Kirkham, S., Hochepied, T., Libert, C., Galor, A.,
Kim,J., Lodato, M. A., Garaycoechea, J. I., Gawad, C.,
West, J., Walsh, C. A., and Park, P. J. (2022) Single-cell
genome sequencing of human neurons identifies somatic
point mutation and indel enrichment in regulatory ele-
ments, Nat. Genet., 54, 1564-1571, doi: 10.1038/s41588-
022-01180-2.
24. Lodato, M., Rodin, R.E., Bohrson, C.L., Coulter, M.E.,
Barton, A. R., Kwon, M., Sherman, M. A., Vitzthum,
C.M., Luquette, L. J., Yandava, C. N., Yang, P., Chitten-
den, T. W., Hatem, N. E., Ryu, S. C., Woodworth, M. B.,
Park, P. J., and Walsh, C. A. (2018) Aging and neurode-
generation are associated with increased mutations in sin-
gle human neurons, Science, 359, 555-559, doi:10.1126/
science.aao4426.
25. Li, X., Cao, G., Liu, X., Tang, T. S., Guo, C., and Liu,H.
(2022) Polymerases and DNA repair in neurons: impli-
cations in neuronal survival and neurodegenerative dis-
eases, Front. Cell. Neurosci., 16, 852002, doi: 10.3389/
fncel.2022.852002.
26. Scheijen, E. E. M., and Wilson, D. M. 3rd. (2022)
Genome integrity and neurological disease, Int. J. Mol.
Sci., 23, 4142, doi:10.3390/ijms23084142.
27. Zullo, J. M., Drake, D., Aron, L., O’Hern, P., Dhamne,
S. C., Davidsohn, N., Mao, C. A., Klein, W. H.,