[Back to Issue S1 ToC] [Back to Journal Contents] [Back to Biochemistry (Moscow) Home page]

REVIEW: Hypobiosis of Mycobacteria: Biochemical Aspects


Margarita O. Shleeva1,a* and Arseny S. Kaprelyants1

1A.N. Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia

* To whom correspondence should be addressed.

Received May 5, 2022; Revised August 22, 2022; Accepted August 29, 2022
Under suboptimal growth conditions, bacteria can transit to the dormant forms characterized by a significantly reduced metabolic activity, resistance to various stress factors, and absence of cell proliferation. Traditionally, the dormant state is associated with the formation of highly differentiated cysts and spores. However, non-spore-forming bacteria can transfer to the dormant-like hypobiotic state with the generation of less differentiated cyst-like forms (which are different from spores). This review focuses on morphological and biochemical changes occurred during formation of dormant forms of mycobacteria in particular pathogenic M. tuberculosis (Mtb) caused latent forms of tuberculosis. These forms are characterized by the low metabolic activity, the absence of cell division, resistance to some antibiotics, marked morphological changes, and loss of ability to grow on standard solid media (“non-culturable” state). Being produced in vitro, dormant Mtb retained ability to maintain latent infection in mice. After a long period of dormancy, mycobacteria retain a number of stable proteins with a potential enzymatic activity which could participate in maintaining of low-level metabolic activity in period of dormancy. Indeed, the metabolomic analysis showed significant levels of metabolites in the dormant cells even after a long period of dormancy, which may be indicative of residual metabolism in dormant mycobacteria. Special role may play intracellularly accumulated trehalose in dormant mycobacteria. Trehalose appears to stabilize dormant cells, as evidenced by the direct correlation between the trehalose content and cell viability during the long-term dormancy. In addition, trehalose can be considered as a reserve energy substrate consumed during reactivation of dormant mycobacteria due to the ATP-dependent conversion of trehalase from the latent to the active state. Another feature of dormant mycobacteria is a high representation of proteins participating in the enzymatic defense against stress factors and of low-molecular-weight compounds protecting cells in the absence of replication. Dormant mycobacteria contain a large number of hydrolyzing enzymes, which, on the one hand, ensure inactivation of biomolecules damaged by stress. On the other hand, the products of these enzymatic reactions can be used for the maintenance of energy state and vital activity of bacterial cells during their long-term survival in the dormant state, i.e., for creating a situation that we propose to refer to as the “catabolic survival”. In general, dormant non-replicating mycobacterial cells can be described as morphologically altered forms that contain principal macromolecules and are stabilized and protected from the damaging factors by an arsenal of proteins and low-molecular-weight compounds. Because of the presumable occurrence of metabolic reactions in such cells, this form of survival should be referred to as hypobiosis.
KEY WORDS: Mycobacterium tuberculosis, dormant mycobacteria, latent tuberculosis, “non-culturable” bacteria, trehalose, porphyrin, proteome, metabolome, residual metabolism, cell protection mechanisms

DOI: 10.1134/S0006297923140043