[Back to Issue 8 ToC] [Back to Journal Contents] [Back to Biochemistry (Moscow) Home page]

SkQ1 Improves Immune Status and Normalizes Activity of NADPH-Generating and Antioxidant Enzymes in Rats with Adjuvant-Induced Rheumatoid Arthritis


Evgenii D. Kryl’skii1,a*, Tatyana N. Popova1, Dmitrii A. Zhaglin1, Grigorii A. Razuvaev1, and Sergei A. Oleynik1

1Voronezh State University, 394018 Voronezh, Russia

* To whom correspondence should be addressed.

Received April 19, 2023; Revised July 7, 2023; Accepted July 9, 2023
Rheumatoid arthritis (RA) is a severe systemic autoimmune inflammatory disease. Oxidative stress and excessive formation of reactive oxygen species (ROS) by the mitochondria are considered as the central pathogenetic mechanisms of connective tissue destruction and factors responsible for a highly active inflammatory process and autoimmune response. The aim of this work was to evaluate the effect of mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decyltriphenylphosphonium (SkQ1) on the immune status, intensity of free radical-induced oxidation, and functioning of the antioxidant system (AOS) and NADPH-generating enzymes in rats with the adjuvant-induced RA. Laboratory animals were divided into 4 groups: control group; animals with RA; animals injected intraperitoneally with SkQ1 at the doses of 1250 and 625 nmol/kg, respectively, every 24 h for 8 days starting from day 7 of RA development. Tissue samples for analysis were collected on day 15 of the experiment. Erythrocyte sedimentation rate, the content of circulating immune complexes, and the concentration of class A, M, and G immunoglobulins were determined by enzyme immunoassay. The intensity of free radical-induced oxidation was evaluated based on the assessment of the iron-induced biochemiluminescence, diene conjugate content, and activity of aconitate hydratase. Enzymatic activity and metabolite content in the tissue samples were analyzed spectrophotometrically. It was shown that the development of RA was associated with an increase in the manifestation of immune response markers and intensity of free radical-induced oxidation, as well as with disruption of the AOS functioning and activation of NADPH-generating enzymes. SkQ1 administration resulted in a dose-dependent changes in the oxidative status indicators towards the control values and normalization of the immune status parameters. SkQ1 decreased the level of mitochondrial ROS, resulting in the suppression of the inflammatory response, which might cause inhibition of free radical generation by immunocompetent cells and subsequent mitigation of the oxidative stress severity in the tissues.
KEY WORDS: 10-(6′-plastoquinonyl)decyltriphenylphosphonium, rheumatoid arthritis, oxidative stress, immune status, immunoglobulins, antioxidant system

DOI: 10.1134/S0006297923080047