
INTRODUCTION

This issue, which is dedicated to protein misfolding

and aggregation in cataract disorders, was prepared at the

suggestion and with participation of Boris Ivanovich

Kurganov, Chief Researcher of the Bach Institute of

Biochemistry and Honored Scientist of the Russian

Federation, who passed away on October 1, 2021. His

unremitting research efforts in the field of enzymology,

mechanisms of protein aggregation, and role of molecu-

lar and chemical chaperones in prevention of protein

aggregation, which spanned more than six decades, have

left an important and valuable scientific heritage. Boris

Kurganov had also played a prominent role in studying

the mechanism of aggregation of eye lens crystallins, pro-

teins that have an essential role in the transparency and

refractive index of the lenticular tissues [1].

CRYSTALLIN PROTEINS AS IMPORTANT

PATHOGENIC TARGETS FOR ACCUMULATION

OF VARIOUS STRUCTURAL DAMAGES

These water-soluble structural proteins found in the

vertebrate eye lenses are classified into three main

types – α-, β-, and γ-crystallins – that elute from a gel

filtration column in the same order due to the differences

in their size and degree of oligomerization [2]. α-crys-

tallins (αA and αB) and β-crystallins (βA1, βA2, βA3,

βA4, βB1, βB2, βB3; A, acidic; B, basic) form larger and

smaller oligomers, respectively, while γ-crystallins (γA,

γB, γC, γD, γE, γF, γN, and γS) are essentially

monomers [3]. These highly stable β-rich proteins form

very regular and interactive macrostructures through sub-

tle interactions with each other which are important for

lens transparency [1, 4]. In addition to disrupting such

important fine protein–protein interactions, genetic

mutations and accumulation of physical and chemical

damages over the lifespan result in structural changes and
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exposure of protein hydrophobic regions. Eventually,

these adverse molecular events lead to the unfolding and

aggregation of lens crystallins, inducing cataract develop-

ment. Cataract is the most common cause of blindness

worldwide, affecting tens of millions of people [5-9].

Beside lenticular tissues, crystallin proteins (e.g., αB-

crystallin) are found in other tissues, such as retina, heart,

skeletal muscle, skin, brain, etc. [10, 11]. Therefore,

structural and functional damages to these proteins are

also associated with other disorders, including myopathy,

neurological problems, cardiac diseases, muscular disor-

ders, and invasive breast cancer tumors [12-15]. Along

with the structural role, crystallins have several metabolic

and regulatory functions, both inside and outside of

lenticular tissues [16]. Although enzymatic activity has

been reported for some type of crystallins [17], their most

important biological function can be attributed to the

chaperone activity of α-crystallin, which plays a vital role

in preventing and delaying cataract diseases and increases

cell resistance to various types of chemical and physical

stress [18, 19]. This chaperone, which belongs to the heat

shock protein (hsp) family, also plays a prominent role in

the inhibition of apoptosis and cytoskeletal remodeling

[20, 21]. Crystallins are highly clear and refractive pro-

teins with abnormal hydration properties. They resist

unfolding and aggregation for decades during human

life [22]. However, mutations and accumulation of phys-

ical and chemical damages eventually cause unfolding

and aggregation of these proteins [23]. Also, some dis-

eases (e.g., diabetes) characterized by the elevated levels

of oxidative compounds and reactive metabolites (sugars

and sugar derivatives) in eye lenses, increase the extent of

crystallin structural damage and thus accelerate the

process of cataract formation [24, 25]. Mutations in the

genes of two α-crystallin subunits are also associated with

the dominant and recessive forms of cataract, as well as

with a wide range of neurological, cardiovascular, and

muscular disorders [26-28]. Mutations that cause severe

damage to these proteins usually result in congenital

cataracts, while milder mutation increase lens suscepti-

bility to the environmental damage and are associated

with the age-related cataract development [29]. Also,

with age, gradual accumulation of covalent damages due

to various factors, such as ultraviolet radiation [30], oxi-

dation [31], deamidation [32], and proteolysis [33],

results in the formation of protein aggregates that scatter

the incident light in the lens. Numerous studies have also

demonstrated that the abnormal levels of essential ele-

ments (calcium, copper, and zinc) and heavy metals

(divalent lead, cadmium, and mercury) are the important

sources of destructive damages to crystallin proteins and,

under some circumstances, can be considered as poten-

tial causative factors in cataract development [34-37]. For

example, diseases that increase the level of essential met-

als in eye lenses (e.g., diabetes) also cause structural dam-

age to lens proteins and induce their aggregation, which

further facilitates the development of cataract complica-

tions [38, 39]. Although, the only currently available

treatment is surgical removal of cataract lenses, scientific

and medical community has long sought for the non-

destructive treatments as well. In this regard, therapies

based on the use of natural products [40], modulators of

oxidation processes [41], protein aggregation inhibitors

(e.g., chemical chaperones) [42], homoeopathic reme-

dies [43], and lens regeneration using endogenous stem

cells [44] have been proposed.

Below, I will briefly introduce the articles of this spe-

cial issue [51, 53, 57, 58, 60]. Over the years, Professor

Boris Kurganov’s research team has developed methods

for evaluating the effect of molecular and chemical chap-

erones, as well as the effects of their combined applica-

tion on the kinetics of protein aggregation [45-50]. In

continuation of these studies, Chebotareva et al. [51]

investigated the effect of trehalose as a chemical chaper-

one, on the quaternary structure and chaperone activity

of αB-crystallin. Mature fiber cells contain extremely

high concentrations of crystallin proteins that make up

approximately 90% of the dry weight of human lens [52].

While lens proteins are continuously exposed to physical

and chemical damage, lens cells have developed protec-

tive systems to counteract the harmful effects of environ-

mental factors on lens proteins. However, in the case of

diseases, such as diabetes or aging, the dominance of the

damaging factors over two important levels of natural

protections (chaperone and antioxidant defense systems)

can have serious destructive effects on the structure and

function of lens proteins. Various approaches for prevent-

ing lens opacity, in particular, combined use of antioxi-

dants and chemical molecules, have been reviewed by

Muranov and Ostrovsky [53]. Diabetes mellitus is one of

the causes of rapid cataract development. Beside oxida-

tive stress, this metabolic disorder is characterized by the

elevated concentrations of reactive metabolites, such as

glucose, fructose, phosphorylated sugars (glycolytic

intermediates), methylglyoxal, peroxynitrite, and sor-

bitol, in the lenticular tissues [54]. The oxidative stress

typical for diabetes promotes the reaction between sugars

or sugar derivatives and eye lens proteins [55]. The

osmotic stress created by the increased sorbitol accumu-

lation in eye lenses in hyperglycemia is one of the mech-

anisms of diabetic cataract [56]. Therefore, the effect of

different concentrations of sorbitol on the structure and

chaperone-like activity of rat α-crystallin has been stud-

ied by Reddy et al. [57]. The impact of peroxynitrite (an

important source of oxidative stress in diabetes), methyl-

glyoxal (diabetes-associated reactive carbonyl com-

pound), and their simultaneous action on the structure

and function of human recombinant αA-crystallin (αA-

Cry) and the protective role of ascorbic acid and glu-

tathione (main components of lens antioxidant defense

system) have been investigated by Yousefi et al. [58].

Many mutations that found in the crystallin protein
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genes are associated with diseases such as cataracts and

myopathy [59]. Finally, the role of genetic mutations of

α-crystallins on their structural unfolding and aggrega-

tion is discussed by Rao et al. [60].

This issue was initiated by and until recently created

with a significant contribution from Professor Kurganov,

and now it had to be finished in his absence. This is why

we dedicate it to the memory of Professor Boris Ivanovich

Kurganov, whose relentless efforts over the past decades

and his valuable and influential scientific legacy have

paved the way for other researchers to the unknown fron-

tiers of knowledge.
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