
Almost 2% of proteins encoded in the human

genome have the ability to bind both DNA and RNA.

These proteins play a key role in the modulation of gene

expression, cell survival, and homeostasis [1]. Among

them, there are proteins with the cold shock domain

(CSD). CSD proteins have been detected in organisms

from different taxa, both prokaryotic and eukaryotic.

The CSD structure is represented by five antiparallel

β-strands forming a compact β-barrel. Strands β2 and β3

contain the RNA-binding motifs RNP1 and RNP2 [2] that

are typical of all CSDs, as well as RRM domains of RNA-

interacting proteins [3]. The side chains of aromatic amino

acids in RNP1 and RNP2 ensure CSD binding to nucleic

acids through the stacking interactions and are crucial for

the RNA-binding and RNA-melting activities of CSD

proteins [4]. In addition to aromatic residues, the surface of

a protein molecule with RNP1 and RNP2 contains numer-

ous basic amino acids. The overall positive charge typical of

this CSD region provides non-specific electrostatic inter-

action with negatively charged molecules of nucleic acids,

while aromatic amino acid side chains stabilize this binding

through the hydrophobic and stacking interactions [4].

Analysis of eukaryotic CSD protein sequences by Kleene

[5] revealed two additional RNA-binding motifs, one of

which almost coincides with the β1 strand, while the other

is located in the middle of the β3β4 loop.

In prokaryotic cold shock proteins (CSPs), which

have a common spatial structure, aromatic amino acid

residues are located in the same plane, thus forming a

hydrophobic cluster of unusually large size on the protein

surface [6, 7].

COLD SHOCK PROTEINS OF PROKARYOTES

General characteristics. The name cold shock domain

originates from the discovery of this structure in the stud-

ies on the adaptation of bacteria to low temperatures.
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Adaptation of prokaryotic organisms to a decreasing

ambient temperature has been best studied in the

mesophilic bacterium Escherichia coli. The optimal tem-

perature for E. coli growth is 37°C; cultivation at temper-

atures below 20°C represents a low-temperature stress for

this microorganism. The most obvious consequence of a

sudden temperature downshift (cold shock) is cessation

of growth and division of E. coli cells for a period of 2-4 h

or more [8]. It was found that cold shock almost com-

pletely suppresses the synthesis of most proteins, which is

the main cause for the cessation of bacterial growth [9,

10]. However, some proteins showed higher expression

levels than before the onset of unfavorable temperatures

[8-12]. When the temperature was decreased from 37 to

15°C, one of these proteins, called CspA (cold shock pro-

tein A), accumulated in amounts as high as 13% of the

total pool of cellular proteins synthesized under the cold

shock conditions [13]. Structurally, this protein is a β-

barrel consisting of five antiparallel β-strands [14].

CspA-like proteins have been detected in bacteria

from different ecological groups, such as psychrophiles,

psychrotrophs, mesophiles, thermophiles, and hyperther-

mophiles [15]. Some of these proteins were found to be

involved in the bacterial adaptation to the low-tempera-

ture stress and, therefore, named cold shock proteins

(CSPs). The structural property of CSPs is the presence

of the cold shock domains (CSDs).

In prokaryotic genomes, CSPs are usually encoded

by a family of homologous genes [16]. In E. coli, the CSP

family includes nine members named CspA to CspI. It

was found that expression of CspA, CspB, CspG, and

CspI (especially, the first three proteins) is induced at low

ambient temperatures [10, 17], while CspC and CspE are

expressed at 37°C [18, 19].

As demonstrated by deletion analysis, the functions

of CSPs in E. coli overlap, at least, in the adaptation to

low temperatures [20]. For example, strains carrying

simultaneous deletions of two or three CspA homologs

(∆cspA∆cspB, ∆cspA∆cspG, ∆cspB∆cspG, ∆cspA∆cspI,

∆cspA∆cspB∆cspG) retained the ability to grow at low

temperatures (15°C). Overexpression of the CspE gene

was observed in the ∆cspA∆cspB∆cspG strain upon the

temperature decrease. These facts indicate that members

of the E. coli CSP family are functionally interchangeable

and can compensate for the absence of expression of one

or several homologs. Only the deletion of as many as four

genes (∆cspA∆cspB∆cspG∆cspE) was sufficient to generate

an E. coli strain incapable of growing at low temperatures.

The sensitivity of this strain to the temperature decrease

could be compensated through the overexpression of any

E. coli CSP, except CspD [20].

All bacterial CSPs share a common structure; they

are typically small in size (67-73 a.a.) and lack any other

sequences except the CSD. NMR and X-ray studies have

determined the 3D structures of some bacterial CSPs,

including CspA from E. coli, CspB from Bacillus subtilis,

CspB from Bacillus caldolyticus, and CspB from

Thermotoga maritima [6, 14, 21, 22]. Despite significant-

ly different amino acid sequences, the spatial structures of

these proteins are very similar. The studies of the tertiary

structure of E. coli CspA demonstrated that the surface of

this protein is composed of the β2 and β3 strands and car-

ries a compact hydrophobic cluster containing aromatic

amino acid residues Phe18, Phe20, Phe31, His33, and

Phe34. The residues Phe18 and Phe20 belong to the

RNP1 motif, while Phe31, His33, and Phe34 belong to

RNP2 [23].

Functions of prokaryotic CSPs. All known functions

of prokaryotic CSPs are associated with their ability to

bind nucleic acids.

Interactions of bacterial CSPs with nucleic acids

have been extensively studied in vitro. It was found that E.

coli CspA has a low affinity for RNA and almost no speci-

ficity for its nucleotide sequence [24]. Other members of

the E. coli CspA family can also bind RNA and ssDNA,

but with slightly higher specificity. For example, CspB has

the highest affinity for the UUUUU motif, while CspC

preferentially binds the AGGGAGGGA sequence. CspE

selectively interacts with AU-rich sequences [25]. CspB

protein from B. subtilis exhibits an increased affinity for

T-rich sequences; however, its specificity to nucleic acids

is rather low [26]. Various prokaryotic CSPs not only bind

nucleic acids, but also destabilize their secondary struc-

ture, i.e., demonstrate the so-called melting activity [27,

28]. A special case of the RNA-melting activity of CSPs

is transcription antitermination. Through binding to the

terminator sequences in RNAs, CSPs destabilize their

secondary structure, thereby inhibiting termination of

transcription [27, 29]. Such activity has been shown, for

example, for CspE, which maintains high expression lev-

els of the promoter-distant genes in the metY-rpsO oper-

on [29]. It has been demonstrated that the expression of

particular genes involved in the cold adaptation in bacte-

ria in vivo is activated by the antitermination mechanism

[29].

Long single-stranded mRNAs tend to form a variety

of secondary structures that can interfere with the ribo-

some movement or hide the Shine–Dalgarno sequence,

thereby adversely affecting the process of translation. This

phenomenon becomes more pronounced with a decrease

in the ambient temperature [30]. The RNA-melting

activity of CSPs contributes to the destabilization of the

RNA secondary structure, eliminates its adverse effects

on translation, and maintains the operation of the protein

synthesis machinery [24, 31-33]. It should be noted that,

due to their low affinity for mRNAs, CSPs hardly make

significant obstacles to the ribosome movement during

translation [32].

The involvement of CSPs in the destabilization of

the mRNA secondary structure was demonstrated in

E. coli [12]. Deletion of the CspA gene caused a 30-40%

decrease in the total translation efficiency at low temper-
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atures. Additional deletion of genes encoding other E. coli

CSPs (CspB, CspE, CspG) led to an almost complete loss

of translational activity. The need for CSPs during cold

acclimation can result from their ability to destabilize the

mRNA secondary structure. Thus, it was found that in a

mutant lacking four CSPs (∆cspA∆cspB∆cspE∆cspG),

mRNA molecules were highly structured at low tempera-

tures. Interestingly, the proliferation rate of the mutant

with five deleted CSPs (∆cspA∆cspB∆cspC∆cspE∆cspG)

was lower than that of the wild-type E. coli cells even at

37°C [12].

In addition to the general increase of translation effi-

ciency, CSPs can regulate the stability of mRNAs by

affecting their degradation [31]. Thus, E. coli CspC and

CspE stabilize the mRNAs for RpoS (general regulator of

stress response) and UspA (universal protein of stress

response) [34]. CspE interacts with mRNA poly(A)-

sequences and impedes mRNA degradation in the case of

its treatment with polynucleotide phosphorylase

(PNPase) and RNase E [35].

Therefore, prokaryotic CSPs regulate the synthesis

of cell proteins via various mechanisms both at low tem-

peratures and under conditions optimal for the growth of

bacterial cells.

EUKARYOTIC CSD PROTEINS 

General characteristics. Proteins containing CSDs

have been also found in the multicellular organisms from

different kingdoms of life. Unlike prokaryotic CSPs,

which are almost always composed of the CSD only,

eukaryotic proteins contain other domains as well. For this

reason, they are often called CSD proteins to emphasize

their multidomain nature. Eukaryotic proteins composed

exclusively of CSDs are rare; they may have either one

CSD copy (Clah8 from Cladosporium herbarum and zfY1

from Danio rerio) or several CSDs connected via the link-

er sequences (UNR/CSDEI from vertebrates) [36-38].

Additional domains present in the CSD proteins

vary. In this review, we will examine proteins with glycine-

rich sequences, CCHC zinc finger domains, and extend-

ed domains consisting of alternating clusters of positively

and negatively charged amino acid residues, as well as

their various combinations (Fig. 1). The presence of addi-

tional disordered domains in CSD proteins expands their

multifunctionality [39] and allows them to act as organiz-

ers of various functional complexes, including those in

the non-membranous structures, such as processing bod-

ies (P-bodies) and stress granules [40].

The spatial structure of the eukaryotic CSDs is virtu-

ally identical to that of the prokaryotic CSPs and includes

five β-strands forming the β-barrel. The main difference

between the eukaryotic and prokaryotic proteins is that

the former have a longer linker sequence connecting β3

and β4 strands that also has different amino acid compo-

sition [41].

YB PROTEINS

A large family of vertebrate CSD proteins is called Y-

box binding proteins (YB proteins). It includes three sub-

families encoded by the YBX1, YBX2, and YBX3 genes,

respectively [42]. The YBX3 transcript undergoes alterna-

tive splicing resulting in two mRNAs coding for the YB-3

protein long and short isoforms [5].

All YB proteins are basic (pI = 9.5-10.7) and com-

posed of the structured CSD and two disordered domains:

the N-terminal domain rich in Ala and Pro residues (A/P

domain) and the C-terminal domain (CTD) containing

four Arg-rich clusters that alternate with four clusters of

negatively charged amino acid residues. The CSDs of all

YB proteins are virtually identical. Besides, YB proteins

have two highly homologous (~90%) CSD-flanking link-

ers: 9-a.a. N-terminal linker (NC9) and 13-a.a. C-termi-

nal linker (CC13) [5] (Fig. 2).

Members of the YB protein family are interchange-

able, although only partially. Each of them has its own

expression profile in ontogenesis. YB-1 is expressed dur-

ing almost the entire ontogenesis, especially at its early

stages, and then gradually disappears with aging from the

Fig. 1. Domain structure of CSD proteins with and without additional domains.

+/− charged clusters
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organs at different times. In old mice, YB-1 can be

detected only in the liver [43]. YB-2 is present in large

amounts in the gametes (oocytes, eggs, and sperm) of the

clawed frog Xenopus laevis but completely disappears at

the gastrula stage [44]. YB-3 is expressed in mammalian

embryos; after birth, its amount decreases in all tissues,

except heart, skeletal muscles, blood vessels, and testicles

[45, 46]. It was recently reported that YB-3 is also detect-

ed in some brain regions in adult mammals (in glial cells),

while YB-1 is expressed in neurons [47].

The YBX1 knockout disturbs normal mouse develop-

ment as early as on the embryonic day 13.5 (E13.5).

Usually the animals die either before birth or immediate-

ly after it. Simultaneous knockout of the YBX1 and YBX3

genes results in the animal’s death on an embryonic day

8.5-11.5 (E8.5-11.5) [48, 49].

General characteristics of YB-1. Human YB-1 is the

best studied member of the YB protein family. The

progress in its characterization is mostly associated with

the involvement of this protein in oncogenesis [50-52].

Originally, YB-1 was discovered as the major protein of

mRNPs (messenger ribonucleoproteins) [53-55] and

named p50 in accordance with its electrophoretic mobil-

ity. Later, a protein interacting with the promoter regions

of the major histocompatibility complex class II

(MHCII) genes [56] and the enhancer region of the epi-

dermal growth factor receptor gene [57] was discovered

and sequenced. Since both target DNA regions contained

the Y-box sequence (5′-CTGATTGGC/T
C/TAA-3′), this

protein was named Y-box binding protein 1 (YB-1). The

sequencing of p50 demonstrated its identity to YB-1 [58].

Despite the fact that the electrophoretic mobility of

YB-1 corresponds to a protein with a molecular mass of

50 kDa, its molecular mass calculated from the amino

acid sequence is 36 kDa. Hence, the protein exhibits

abnormal mobility during electrophoresis in the presence

of sodium dodecyl sulfate [42].

YB-1 isolated from the rabbit reticulocyte mRNPs

can form multimers with the sedimentation coefficient of

~18S and molecular mass up to 800 kDa [58]. According

to the atomic force microscopy and electron microscopy

on a substrate, multimeric YB-1 represents homogenous

flattened granules with a diameter of 30-40 nm and height

of 8-10 nm [41]. It is assumed that YB-1 protein forms

multimers through the CTD when positively charged

clusters of one protein molecule interact with negatively

charged clusters of another molecule and vice versa [59].

It is possible that YB-1 CSD is also involved in the multi-

mer formation via dimerization [60]. The YB-1 homo-

dimer is formed by the interaction of Asp105 of one mol-

ecule and Asp105′ of the other molecule and stabilized by

the proximity of Phe66 and Phe66′, as well as by the

hydrogen bond between Tyr99 and Glu107′ [60].

Under certain conditions, YB-1 and its fragments

can form reversible amyloid fibrils. CSD is responsible for

the fibril formation, while the N-terminal domain stimu-

lates the process. It was found that the first half of the

CTD blocks the fibril formation, whereas its second half

removes the blocking effect, but only in solutions with a

high ionic strength [61].

YB-1 in the cytoplasm. YB-1 localized mostly to the

cytoplasm, where it associates with translated and

untranslated mRNAs. YB-1 was also detected in the com-

plexes with miRNAs [62], tRNA fragments [63], and long

non-coding RNAs [64]. In the cytoplasm, YB-1 partici-

pates in the global and specific regulation of mRNA

translation at the initiation stage. YB-1 can either stimu-

late translation (at a comparatively low YB-1/mRNA

ratio) or inhibit it (at a high YB-1/mRNA ratio) [65].

YB-1 also protects mRNAs against degradation and sig-

nificantly prolongs their lifetime (up to 100 times) [66].

Free YB-1 and YB-1 in the unsaturated complexes with

mRNAs can interact with actin and microfilaments to

ensure localization of translationally active mRNAs to

actin microfilaments [67]. Through binding to tubulin,

YB-1 stimulates microtubule formation and can con-

tribute to the localization and transport of translationally

inactive mRNAs along the microtubules [68].

YB-1 interaction with the mitotic spindle micro-

tubules facilitates their assembly and stabilization [69].

Fig. 2. Domain structure of YB proteins. NC9 is horizontally shaded; CC13 is vertically shaded; pluses and minuses denote clusters of posi-

tively and negatively charged amino acid residues, respectively.
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Excessive binding of YB-1 to the centrosomes can disturb

their correct doubling in mitosis, promote the appearance

of additional centrosomes, interfere with the correct

chromosome separation, and cause partial aneuploidy,

which, in turn, can lead to malignant cell transformation

[70]. The role of YB-1 in stress and transport granules is

less studied, and the obtained data are often contradicto-

ry. According to some reports, YB-1 is an obligatory com-

ponent of stress granules that stimulates their formation;

YB-1 knockout disturbs the process of stress granule

assembly [71]. According to the other studies, increased

YB-1 concentration interferes with the formation of stress

granules [72].

YB-1 in the nucleus. YB-1 translocation from the

cytoplasm to the nucleus occurs during the G1/S cell

cycle transition and stimulates expression of cyclin genes

[73, 74]. Its nuclear localization is determined by growth

factors and cytokines [42]. The process of translocation is

stimulated by UV irradiation and xenobiotics causing

DNA damage [42]. It was recently shown that nuclear

translocation of YB-1 is under the circadian clock control

[75]. Subcellular distribution of YB-1 is regulated by the

nuclear localization signal (NLS) and cytoplasmic reten-

tion signal (CRS) (Fig. 3). Usually, CRS masks the NLS,

and YB-1 is retained in the cytoplasm. Specific cleavage

of CRS by the 20S proteasome leads to the translocation

of C-truncated YB-1 (Fig. 3) to the nucleus [76]. Another

mechanism of the full-length YB-1 transport to the

nucleus is associated with its phosphorylation [77, 78]. In

the nucleus, YB-1 co-localizes with RNA polymerase I

and can be detected in Cajal bodies [79]. An increased

concentration of YB-1 can contribute to the dissolution

of nucleoli [80]. When in the nucleus, YB-1 participates

in the DNA replication (including viral DNA), DNA

repair, transcription of numerous genes, and alternative

splicing of mRNA precursors [42, 65]. It has recently

been shown that the activity of YB-1 can be inhibited by

its interaction with circular RNAs in the nucleus [81].

YB-1 interaction with nucleic acids. The ability of

YB-1 to bind both RNA and DNA indicates low protein

specificity for the type of nucleic acid. Nevertheless,

YB-1 shows a higher affinity for RNA vs. ssDNA, which

according to the molecular modeling, can be explained by

additional H-bonding occurring due to the presence of

2′OH group in ribose. Molecular dynamics analysis also

showed that YB-1 binding to the nucleic acid strand is

orientation-dependent; its affinity is higher when the

binding occurs in the 5′→3′ direction [82].

YB-1 exhibits almost identical affinity for rRNA and

mRNA. The dissociation constant (KD) of the YB-1 com-

plex with RNA is ~4 nM [83]. When interacting with

RNA, YB-1 alters the secondary structure of the latter.

Addition of YB-1 to the globin mRNA at room tempera-

ture causes melting of ~60% of its secondary structure.

YB-1 can stimulate annealing of complementary DNA

and RNA sequences, as well as the exchange of comple-

mentary strands of nucleic acids, leading to the formation

of very long perfect duplexes [58, 84].

YB-1 shows a much higher affinity for ssDNA than

for dsDNA. YB-1 binding to the CT-regions in one of the

DNA strands results in the emergence of nuclease-sensi-

tive regions and formation of the H-structure in the other

strand. YB-1 is capable of binding to and breaking the

double helix in dsDNA fragments with blunt ends,

duplexes with protruding 5′- and 3′-ends, DNA mole-

cules with unpaired bases and apurinic sites, and cis-

platin-treated DNA [84-86]. The 3′→5′ exonuclease

activity of YB-1 [87] and its elevated affinity for damaged

DNA regions [85] confirm its involvement in the DNA

repair in the nucleus.

As mentioned above, YB-1 binding to nucleic acids

has a dual nature: it can either stabilize or destabilize the

nucleic acid secondary structure [88]. Its interaction with

dsDNA results in DNA melting and impedes recruitment

of dsDNA-binding factors responsible for its transcrip-

tion [89]. The ability of YB-1 to melt the secondary struc-

ture was confirmed in experiments on microchips, where

dsDNA was used as a substrate. When interacting with the

duplexes, YB-1 predominantly binds to one strand and

destabilizes the duplex [90]. It was suggested that the

CSD region responsible for the dsDNA binding is the

loop connecting β3 and β4 strands, since its replacement

with a shorter loop of prokaryotic YB-1 (which also dif-

fers in the amino acid composition) resulted in the loss of

this activity [91].

Structures formed by YB-1 in the complexes with

nucleic acids. As shown in in vitro experiments, the fol-

lowing structures can be formed depending on the YB-1/

Fig. 3. YB-1 amino acid residues undergoing phosphorylation resulting in the changes in the YB-1 activity. Arrows, sites of YB-1 truncation:

1-180, YB-1 fragment used for NMR analysis; 219, site of YB-1 cleavage by the 20S proteasome.
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mRNA ratio: non-compact translated mRNPs or beads-

on-a-string [41]. In the case of translated mRNAs (at a

relatively low YB-1/mRNA ratio), YB-1 is present on the

mRNA as a monomer (one YB-1 molecule per ~80 nt of

mRNA) and binds to it through the CSD and CTD. In the

case of untranslated, protein-saturated mRNAs, YB-1

forms multimers (beads) consisting of approximately 20

molecules, that have the molecular mass of ~700 kDa,

diameter of 20 nm, and height of 7 nm (each bead per 600-

700 nt of mRNA, i.e., one YB-1 molecule per 30-35 nt of

mRNA) [41]. The formation of beads on the mRNA prob-

ably occurs by the same mechanism as the formation of

multimers from free YB-1 molecules. Studying the role of

YB-1 domains in the protein multimerization showed that

isolated CTD forms structures smaller in size than those

formed by the full-length protein, while CSD is uncapable

of forming the beads [92]. This is consistent with the pre-

viously proposed model of saturated YB-1 complexes with

untranslated mRNAs, according to which the beads of

multimeric YB-1 are formed through the interaction of

CTDs [41]. This model is also supported by the results of

super-resolution microscopy and fluorescence correlation

spectroscopy showing that in living cells, mRNAs are

associated, inter alia, with YB-1 and form structures sim-

ilar to the beads-on-a-string [93].

Recently, the complex of YB-1 CSD with the specif-

ic sequence CAUC within the UCAUCU hexamer was

successfully crystallized despite a relatively low protein

affinity for CAUC (KD = 1.26 µM), and the structure of

this complex was determined by X-ray analysis with a

1.7-Å resolution [60]. These data allowed to identify

amino acid residues involved in the formation of ππ-

stacking pairs with the nitrogenous bases of CAUC:

C1·His87, A2·Phe85, U3·Phe74, and C4·Trp65. Replace-

ment of these amino acid residues resulted in the com-

plete loss of YB-1 ability to bind the hexamer. An impor-

tant role in the specific recognition of CAUC belongs to

the H-bonds between C1 and Thr89, A2 and Lys118, and

also U3 and both Asp83 and Lys64. Replacement of one of

these residues leads to a minor decrease (2- or 3-fold) in

the YB-1 affinity for the hexamer. Interestingly, Asn70,

which is absent from other CSD-containing proteins

(e.g., Lin28, bacterial CSPs), is involved in the CSD

binding to the sugar-phosphate backbone [60].

Earlier, complexes of the C-truncated YB-1 (1-180)

(Fig. 3) with poly(C), poly(T), and poly(U) of 5, 10, 20,

or 30 nt were studied by NMR [94]. Analysis of the NMR

spectra identified conserved amino acid residues Trp65,

Phe74, and Phe85 involved in the interaction with

oligonucleotides. The use of truncated YB-1(1-180) with

a single cluster of positively/negatively charged amino

acids in its CTD yielded identification of additional phos-

phate-interacting amino acid residues beyond the CSD,

namely, Gly135, Ser136, and Lys137 [94]. These residues

significantly contribute to the YB-1(1-180) affinity for

RNA, as compared to the CSD.

Truncated YB-1(1-180) in a complex with mRNA is

able to form still another (third) structure – linear nucleo-

protein filament [94]. Small-angle X-ray scattering and

molecular dynamics were used to show that YB-1(1-180)

molecules form a single layer along the RNA/ssDNA

strand, with 6 nt per protein molecule. Introduction of

additional charged clusters in the CTD results in the for-

mation of protein multimers and alters mRNA folding in

mRNPs [94]. Binding to protein partners or posttransla-

tional modifications in the CTD, which contains multiple

phosphorylation sites [95], can neutralize the strong pos-

itive charge of the CTD and initiate formation of linear

nucleoprotein filaments in the cell. Despite the tight

packing of YB-1(1-180) in a complex with RNA, the pro-

tein shows no inhibitory activity, but on the contrary,

stimulates mRNA translation [94].

The binding of dimeric YB-1 to RNA (5′-CAUC-

CAACAAGA-3′) and ssDNA (5′-TTGGCCAATCAG-

3′) was studied by calorimetry [96]. The contribution of

the A/P domain was neglectable, while the CTD

sequence (a.a. 130-219) appeared to be most important

for the thermodynamically favorable protein binding to

RNA/ssDNA. This confirms the key role of CSD in YB-1

dimerization and its specific binding to RNA.

YB-1 preferentially binds to the supercoiled DNA at

the intersection of helices, in particular, in the presence

of a competing relaxed strand. Its CTD localizes mostly

to the interface between the two intersecting DNA

helices, so that the YB-1 molecules can interact with each

other. Therefore, the multimers are formed at the sites of

increased DNA condensation. Addition of YB-1 protein

to the linearized DNA stimulates formation of complexes

with a characteristic toroid shape [92].

Specific interactions of YB-1 with nucleic acids. The

participation of YB-1 in the transcription of genes

(including viral genes) occurs by different mechanisms

described in a number of papers [42, 59]. By binding to

DNA, YB-1 regulates the activity of many genes, whose

protein products are involved in apoptosis, embryogene-

sis, immune response, multiple drug resistance, stress

response, and tumorigenesis [42]. This multifunctionality

indicates that YB-1 interacts with specific nucleic acid

sequences.

YB-1 binds mostly to the single-stranded nucleic

acid regions. Experiments on the competition between

homopolyribonucleotides for YB-1 binding have shown

that the YB-1 affinity for them decreases in the following

order: poly(G) > poly(U) > poly(A) > poly(C) [83].

When interacting with ssDNA, YB-1 shows the

highest preference for the G-rich regions. The longer the

G-containing sequence, the higher the dissociation tem-

perature of the DNA–protein complex [83, 90]. G-rich

nucleotide sequences are capable of forming a structure

called G-quadruplex. So far, the data on the specific

recognition of G-quadruplexes by YB-1 are contradicto-

ry [97, 98].
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The table presents some identified nucleotide

sequences that specifically bind to YB-1 and can be

involved in the selective regulation of gene expression.

As follows from the table, YB-1 predominantly binds

to the G- and C-rich sequences of DNA promoters, which

is in agreement with the results of in vitro experiments.

The same trend is observed for the YB-1-binding sites in

RNA. YB-1 immunoprecipitation with RNA showed that

the majority of binding sites are located in the 3′-untrans-

lated regions (3′-UTRs) and exons, while the number of

YB-1-binding sites in 5′-UTRs and intron sequences is

minimal [112]. Analysis of the known binding sites identi-

fies sequences rich in CANC, CU, and GC.

By binding to the promoter regions, YB-1 can inhib-

it or activate transcription of certain genes [100-102, 104,

114]. The process of translation is regulated through the

recognition of specific sites in the 5′-UTRs [110, 111] and

3′-UTRs [106]. YB-1 binding to mRNA is cooperative

[92], which can explain the fact that specific YB-1 binding

to the mRNA 3′-UTRs leads to selective inhibition of pro-

tein synthesis initiation at the 5′-UTRs [105, 106]. By

binding to the 3′-UTRs, YB-1 contributes to the regula-

Nucleic acid type

DNA (promoter regions of DNA poly-
merase α and matrix metalloproteinase-2
genes; erythropoietin gene enhancer) 

DNA (myosin light chain-2v gene promot-
er region) 

DNA (promoter regions on coding and
non-coding strand of GM-CSF DNA) 

DNA (GC-boxes in promoters of SM22α,
p21, cyclin D1, TβRI, KLF4, CCL5 genes)

mRNA 3′-UTR (YB-1 auto-regulation)

mRNA 3′-UTR [Dengue virus (+)]

mRNA (CD44 v5 exon) 

miR-29b2, miR-26a-2, miR-let-7g, miR-
let-7a-2

Exosome mRNAs and long non-coding
RNAs 

mRNA 5′-UTR (ferritin)

mRNA 5′-UTR (Snail1)

tRNA-derived stress-induced RNA
(tiRNA) CU-box

RNA

Identified YB-1-interacting nucleotide sequences 

Reference

[99-101]

[102]

[103]

[104]

[105, 106]

[107]

[108]

[62]

[109]

[110]

[111]

[112]

[113]

Identification method

gel-shift analysis; DNA footprinting

DNA footprinting

UV cross-linking

oligonucleotide pull-down analysis

footprinting; gel-shift analysis;
binding on nitrocellulose filter 

gel-shift analysis and enzymatic
footprinting 

SELEX

iCLIP

pull-down analysis

CLIP-seq

RNA pull-down analysis

Nucleotide sequence

5′-TGATTGGC/T
C/TAA-3′ (Y-box)

AGTGG

CCTG and ACCA;
CCTG and C/TCTG

CCCGCC
GGCGGGG
CCCCGCCG
CACCCGCC
GGCGGGG
CTGATGAGCTCAC

UCCAA/GCA

UCCAGGCA

CAU/CC (CAUC, CACC)

UC/UAUC 
(UCAUC, UUAUC)

ACCAGCCU 
CAGUGAGC 
UAAUCCCA

CAGU/CGC
(CAGUGC, CAGCGC)

GC-enriched clusters 

C/GCUC/G
C/U

C/G
A/U

(GCUCUCA
GCUGUGU
GCUGCCU
CCUGUCA)

CCUGCGG
GCCUGCG
CUGCGGU
GGUCUGC
CCCUGCG
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tion of mRNA localization, which is especially critical for

neurons, in which protein synthesis takes place in axons

[115]. Interestingly, YB-1 can be involved in the transla-

tion regulation not only via its direct binding to the trans-

lated mRNA but through other mechanisms as well. For

example, YB-1 interacts with the 5′-fragments of angio-

genin-induced tRNAAla and tRNACys and inhibits transla-

tion by displacing eIF4F from the mRNA cap structure

[63]. Also, YB-1 binds to miRNAs and regulates their pro-

cessing at the post-transcriptional level [62]; besides,

YB-1 is required for sorting miRNAs into exosomes [116].

Specific recognition of modified nucleic acids by YB-1.

In addition to the sequences described above, YB-1 can

recognize modified nucleotides in mRNAs. The first

studied interaction of this type was YB-1 binding through

its CSD to the mRNA 5′-cap including guanine methyl-

ated at position 7 (m7G). This interaction allows YB-1 to

regulate the stability and translational activity of mRNAs

[117, 118].

Another modified residue recognized by YB-1 is

8-oxoguanine, which is usually a product of oxidative

stress. YB-1 interaction with mRNAs containing this

residue blocks their translation, thereby preventing errors

in protein synthesis [119].

Recently, YB-1 has been characterized as a protein

recognizing 5-methylcytosine (m5C)-containing

mRNAs. It was shown by the isothermal titration

calorimetry that CSD has a higher affinity for the 5′-

UCAU(m5C)U-3′ oligonucleotide than for the non-

methylated 5′-UCAUCU-3′. X-ray structure analysis of

the YB-1–RNA complex identified Trp65 as the major

residue responsible for the m5C recognition [120]. There

are also data indicating that YB-1 is involved in the stabi-

lization of maternal m5C mRNA at the early stages of

embryonic development in Danio rerio [121]. Yet, the role

of YB-1 binding to m5C remains unclear.

The role of post-translational modifications of YB-1

in its binding to nucleic acids. The role of YB-1 covalent

modifications in nucleic acid binding is still poorly stud-

ied. These studies mostly used eukaryotic cells expressing

YB-1 from a plasmid (Fig. 3).

Different stimuli activate appropriate kinases, thus

triggering phosphorylation of YB-1 that, in turn, causes

its nuclear translocation. It is believed that phosphoryla-

tion of particular amino acid residues plays a crucial role

in the recognition of different DNA sequences through

increasing protein affinity toward them. The resulting

specific binding can entail activation or repression of

transcription of various groups of genes [95, 122-125].

YB-1 represses VEGF gene transcription by binding to

the promoter single-stranded hypoxia response region

(HRR). This binding is enhanced in vitro by phosphory-

lation of Ser21 and Ser36 in the YB-1 A/P domain by

GSK3β and ERK2. Therefore, modification of these

amino acid residues can promote the inhibitory effect of

YB-1 on the VEGF mRNA transcription in cells [122].

The IL-1β-triggered phosphorylation of YB-1 at

Ser165 causes tumor growth via activation of the NF-κB

signaling pathway [95]. As shown recently NF-κB signal-

ing can be also activated by the IL-1β-induced YB-1

modification at Ser176. Hence, expression of different

groups of genes controlled by NF-κB depends on which

YB-1 residue (Ser165 or Ser176) is phosphorylated

[125]. In addition, YB-1 phosphorylation at Ser165

results in the YB-1 nuclear translocation [95]. This sug-

gests that differently modified YB-1 (at Ser165 or

Ser176) not only activates NF-κB but also, together

with this factor, recognizes different DNA motifs and

regulates transcription of the corresponding group of

genes.

Phosphorylation of YB-1 at Ser102 leads to the

translation activation by the cap-dependent mechanism.

Modified YB-1 loses its affinity for the cap, thereby pro-

moting rapid assembly of the eIF4F complex on mRNA

and facilitating translation initiation [123]. Under certain

conditions, YB-1 phosphorylation at Ser102 leads to its

translocation to the nucleus. It was found that nuclear

localization of YB-1 stimulates cell growth [77]. Hence, it

can be assumed that YB-1 modification at Ser102 affects

gene expression at both transcriptional and translational

levels.

Phosphorylation of YB-1 at Tyr99 results in its

translocation to the nucleus and repression of the Col1a1

promoter, which exerts a positive effect in renal fibrosis

[124]. Interestingly, Tyr99 residue is also involved in

YB-1 dimerization [60], suggesting that its phosphoryla-

tion can affect protein oligomerization.

An interesting mechanism of CCL5 transcription

regulation by the modified YB-1 during monocytes dif-

ferentiation into macrophages was described in [126]. At

the early stages of differentiation, YB-1 phosphorylated at

Ser102 binds to the CCL5 promoter and activates gene

expression. At the later stages, YB-1 is dephosphorylated

by the serine/threonine phosphatase calcineurin. The

YB-1 affinity for the promoter decreases and CCL5 syn-

thesis ceases [126].

Other YB-1 modifications can affect its transcrip-

tional activity, as it has been reported for YB-1 O-glyco-

sylation at Thr126 [127]. YB-1 modifications might also

affect DNA repair. YB-1, either free or in a complex with

damaged DNA, can interact with the PARP1 polymerase.

At a certain protein ratio (YB-1/PARP1 < 10/1), auto-

modification of PARP1 and poly(ADP-ribosyl)ation of

YB-1 occur. This is accompanied by a decrease in the

YB-1 affinity for DNA, allowing other proteins to repair

the damage [128, 129].

Due to its multifunctional nature, YB-1 can be

involved in the development of diseases. It is now consid-

ered as a prognostic marker in some types of cancer, a

novel anti-cancer therapeutic target [50, 52], and even a

potential therapeutic agent against Alzheimer’s disease

[130].
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LIN28

Lin28 is another well-studied RNA-binding CSD

protein. It was detected in both invertebrates and verte-

brates, and its structure is typical for CSD proteins. In

Lin28, the CSD is located in the N-terminus, while the

C-terminus contains two zinc fingers of the CCНC type.

Some forms of this protein have additional sequences of

several tens amino acids located upstream of the CSD and

downstream of the zinc fingers [131]. There are two iso-

forms of human Lin28: Lin28A (209 a.a.) and Lin28B

(250 a.a.) (Fig. 4). Their CSDs are 85.5% identical.

According to the results reported in [132], Lin28A local-

izes to the cytoplasm and Lin28B is present in the nucle-

us. However, recent reports demonstrated that Lin28B is

mostly a cytoplasmic protein [133, 134].

The study of Lin28 functioning at different develop-

mental stages of various tissues and organs characterized

this protein as a cell division activator and inhibitor of dif-

ferentiation [131]. Low expression of Lin28A and Lin28B

results in a lower rate of growth and development of the

organism [135]. Lin28 is directly involved in the repro-

gramming of somatic cells to stem cells [136, 137]. High

expression levels of Lin28 were observed in the least dif-

ferentiated and most aggressive tumors [138, 139]. Lin28

acts as an oncoprotein and stimulates tumor development

and metastasis in various human cancers [140]. In addi-

tion to the above functions, Lin28 participates in metab-

olism regulation, including glycolysis and related

processes [141, 142].

Originally, Lin28 together with the let-7 miRNAs

were discovered in the nematode Caenorhabditis elegans

as a heterochronic gene that controls developmental tim-

ing [143, 144]. Recent studies have provided evidence for

the Lin28B/let-7 involvement in the regulation of kidney

development timing in mice [145]. In mammals, the let-7

family includes 12 members that target oncogenes and

numerous pluripotency-maintaining genes [146]. Special

attention has been focused on Lin28/let-7 due to the fact

that Lin28 is one of the four factors required for the

reprogramming of differentiated human cells into

induced pluripotent stem cells [136].

Many studies have shown that Lin28 blocks matura-

tion of let-7 [131]. Lin28-induced inhibition of the

mature let-7 formation can occur by three mechanisms.

One is the inhibition of pri-let-7 processing in the nucle-

us by the nuclease Drosha [147, 148]. Another is the sup-

pression of the pre-let-7 processing by the nuclease Dicer

[149]. Lastly, Lin28 promotes the polyuridylation of pre-

let-7 at its 3′-end by recruiting terminal uridyl transferase

TUT4 to the Lin28/pre-let-7 complex [150, 151]. Next,

uridylated pre-let-7 is degraded by the 3′→5′ exonuclease

Dis3I2 [152]. There is a reason to believe that the main

role in the formation of the Lin28/pre-let-7/TUT4 terna-

ry complex belongs to the Lin28 CTD containing two

zinc finger domains (ZKDs) [133]. Interestingly,

polyuridylation of the ternary complex requires the pres-

ence of a double-stranded fragment of pre-let-7 that

should contain at least 15 nucleotide pairs.

Both CSD and ZKDs of Lin28 are involved in the

interaction with pre-let-7 [153, 154]. X-ray structure

analysis of Lin28 complexes with the precursors of pre-

let-7d, pre-let-7-f1, and pre-let-7g showed that Lin28

binds to pre-let-7 through two distinct single-stranded

regions in the terminal loop of let-7 [153]. ZKDs bind to

the GGAG motif, while CSD binds to GNGAY, where Y

is pyrimidine and N is any base. NMR spectroscopy

results reported in the same study showed that the linker

connecting CSD and ZKDs is a flexible structure that

presumably allows Lin28 to interact with all members of

the let-7 family, except let-7a-3 (ortholog of murine let-

7c-2) lacking the GGAG sequence [155]. The study of

the affinity of the full-length Lin28 and its two domains

toward different members of the pre-let-7 family showed

that the full-length Lin28 exhibits the highest affinity for

pre-let-7, while CSD shows the intermediate affinity, and

ZKD shows the lowest affinity for it [133, 153, 154]. The

above results suggest that Lin28 binding to pre-let-7 is a

two-step process [154]. Firstly, CSD binds to pre-let-7,

thereby altering the conformation of the latter and mak-

ing its GGAG motif accessible for ZKD. Next, ZKD

binding to GGAG secures the Lin28/pre-let-7 conforma-

tion that disrupts the interaction between Dicer and pre-

let-7.

More accurate identification of the pre-let-7 motif

that binds to the CSD was performed using bioinformat-

ics techniques [156-158] specifically developed for ana-

lyzing the results of HITS-Clip and Clip-sec studies that

included Lin28–RNA cross-linking and immunoprecipi-

tation, followed by large-scale sequencing. The developed

computer techniques were supplementary to the databas-

es formed based on the results of Lin28–RNA immuno-

Fig. 4. Domain structure of two Lin28 isoforms. ZnF, zinc finger.
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precipitation from the embryonic stem cell lysates [159]

and K652 and HepG2 cell lines [160]. This analysis yield-

ed the (U)GAU motif [161] located in the region of the

previously predicted GNGAY motif [153].

Only half of let-7 family members contain both

GAU and GGAG-like motifs (CSD+ subfamily). These

include pre-let-7b, pre-let-7d, pre-let-7f-1, pre-let-7g,

and mir-98, plus pre-let-7i that has GAC, a variant of

GAU. The rest, except let-7a-3, have only the ZKD-

binding motif GGAG (CSD– subfamily). The study [161]

also reported that Lin28 shows a higher affinity for the

pre-let-7 sequences from the CSD+ subfamily and that

members of this subfamily are much more susceptible to

polyuridylation and subsequent degradation in vivo.

In addition to pri- and pre-let-7 processing, Lin28

controls the level of brain-specific miRNA-9 via a

polyuridylation-independent mechanism [162]. Interest-

ingly, in contrast to pre-let-7, Lin28 interaction with pre-

miRNA-9 is independent of GGAG [163]. During neural

differentiation in vitro, constitutive expression of Lin28A

can either increase or decrease the levels of miRNAs.

This effect of Lin28 overexpression on miRNAs mediated

by a decrease in the let-7 content can result from the

redistribution of Argonaute-associated miRNAs within

their families [164]. In turn, this redistribution can entail

significant changes in translation.

There are also numerous data indicating the exis-

tence in mammalian cells of pathways other than

Lin28/let-7 by which Lin28 exerts its influence on a wide

variety of intracellular processes. First of all, Lin28 inter-

acts with a large set of mRNAs (about several thousand),

which has been demonstrated by cross-linking and

immunoprecipitation with subsequent large-scale

sequencing [159, 165-167] and by analysis of RNA

directly in the immunoprecipitation product [168]. It was

shown that Lin28 binds mostly to the coding mRNA

regions or to the non-coding 3′-UTRs. Analysis of the

Lin28-binding sites in RNA identified two motifs,

AAGNNG and AAGNG, supposedly recognized by

Lin28 and usually located in the terminal loop of the

RNA hairpin structure [159]. Studies of the Lin28-target-

ed RNAs indicated probable auto-regulation of Lin28

and its involvement in the regulation of splicing [165].

Among the most frequent RNA targets of Lin28 in

HEK293 cells are its own mRNA and mRNAs encoding

other RNA-binding proteins and cell cycle regulators

[167].

Studies of embryonic stem cells and cancer cells by

overexpression or RNA interference also indicated the

existence of Lin28-mediated pathways, other than let-7,

in the regulation of cellular events [131, 140, 169].

However, their exact mechanisms remain unknown.

Large-scale studies of the proteome and phospho-

proteome of human embryonic stem cells during their

differentiation [170, 171] identified four phosphorylated

amino acid residues in Lin28: Ser3/Ser5, Ser120, Ser180,

and Ser200 (the latter is within the MAPK recognition

sequence) [172]. Using various MAPK inhibitors, it was

confirmed that Ser200 is phosphorylated by MAPK/ERK

and that its phosphorylation increases Lin28 stability.

Although Lin28 phosphorylation does not affect the

amount of let-7, phosphorylated Lin28 shows higher effi-

ciency in the reprogramming of differentiated cells to the

pluripotent ones.

Previously, Lin28 had been considered exclusively as

an RNA-binding protein. However, recent studies [173]

have shown that in mouse embryonic stem cells, Lin28

regulates transcription through the epigenetic DNA mod-

ification. At the initial stage, Lin28 binds to specific DNA

sites (“CAGnACC”-nn-“GGACAG”) in the promoter

regions located in the immediate vicinity of the transcrip-

tion initiation sites. In turn, this facilitates recruitment

and binding of 5-methylcytosine dioxygenase (Tet1) that

converts 5-methylcytosine to 5-hydroxymethylcytosine.

The knockdown of Lin28 or Tet1 results in the disturbed

regulation of DNA methylation and altered gene expres-

sion. These observations offer a completely new view on

the mechanisms of Lin28 participation in the regulation

of various processes in mammalian cells.

CSD PROTEINS IN PLANTS 

Genes encoding CSD proteins have been detected in

plants of different systematic groups, such as lower plants,

monocotyledonous, dicotyledonous, and arboreous

plants [174]. The genomes of all examined species con-

tained at least two genes for the CSD proteins, as in rice

(Oryza sativa), maize (Zea mays), sorghum (Sorghum

bicolor), and grapes (Vitis vinifera). The largest number of

CSD protein genes (seven) was found in the soybean

(Glycine max) [175].

All plant CSD proteins are structurally very similar

[175] and mostly close to Lin28, with CSD located in the

N-terminal domain and 2 to 7 zinc fingers of the CCHC

type in the CTD [175]. In lower plants, proteins of this

family can contain several CSDs [176], which is untypi-

cal of higher plants. Unlike Lin28, plant CSD proteins

have an increased number of glycine and arginine residues

in their CTDs. Their CCHC-type zinc fingers consist of

14 a.a. (CNNCNNNNHNNNNC; residues shown in

bold coordinate zinc ions). The amino acid sequences of

zinc fingers differ from one another; the most variable are

the 2nd, 3rd, 5th, and 6th residues that vary both within

the zinc fingers of the same protein and between different

proteins. The reason for the variability of the zinc finger

primary structure still remains unclear. It was suggested in

[177] that in plants, the diversity of partner proteins for

each of the CSD proteins depends on the number of zinc

fingers and their amino acid sequence.

The three-dimensional structure of plant CSD pro-

teins has not yet been determined.
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The functions of CSD proteins in plants are charac-

terized much less than in animals. It was found that

expression of plant CSD proteins is activated by a

decrease in the ambient temperature [174, 176, 178-181].

Cold acclimation of soft winter wheat results in a signifi-

cant accumulation of CSD proteins in the apical meris-

tem tissues, whose preservation determines general frost

resistance of the plant; however, no such effect was

observed for the spring wheat [182]. Using the red osier

dogwood shrub (Cornus sericea), it was shown by Western

blotting that the highest accumulation of CSD proteins

occurs during the periods of its maximal cold hardiness

[176].

At the optimal temperatures, expression of genes

encoding various CSD proteins is observed mainly in

young plants, as well as in meristematic and generative

tissues, as it was shown for Arabidopsis thaliana, wheat,

and rice [178-180, 182-184].

The study of A. thaliana with artificially reduced or

enhanced expression of CSD protein genes confirmed the

involvement of these proteins in cold resistance and plant

development. Arabidopsis thaliana AtCSDP3-null lines

displayed a higher sensitivity to freezing temperatures

than the wild-type plants, both with and without cold

acclimation. Overexpression of AtCSDP3 increased the

tolerance of A. thaliana plants to freezing [180].

Overexpression of AtCSDP4 caused a number of abnor-

malities in the plant development; specifically, decreased

the length of siliqua, reduced the viability of ovules, and

induced early browning and shrunken seed formation

starting at the late heart embryo stage [185]. The mutant

lines with up- or downregulated AtCSDP2 expression

exhibited various abnormalities in the apical domination,

flowering timing, and generative sphere development

[178].

The molecular mechanisms through which CSD

proteins contribute to the stress tolerance and plant

development have not yet been elucidated. By analogy

with animal and bacterial CSD proteins, the functions of

plant proteins are believed to be mediated by their inter-

actions with nucleic acids. Various plant CSD proteins

have been demonstrated to localize to the cytoplasm,

which suggests their involvement in events related to

mRNA formation and functioning [178, 180, 186-188].

Interaction of plant CSD proteins with DNA and RNA

was shown in vitro using synthetic oligonucleotides.

Similar to their homologs from animals and bacteria,

these proteins are capable of melting nucleic acid second-

ary structures [186, 188].

Interaction between plant CSD proteins and nucleic

acids in vitro was studied in detail using EsCSDP1,

EsCSDP2, and EsCSDP3 from Eutrema salsugineum

[177, 189, 190]. These proteins were able to melt the sec-

ondary structure of DNA and RNA molecules with dif-

ferent nucleotide sequences and spatial structures.

Experiments with DNA oligonucleotides showed that

melting of the secondary structure required protein bind-

ing to a single-stranded region adjacent to the secondary

structure from the 3′-direction; for effective melting, the

single-stranded region should be at least 7-8-nt-long.

Proteins with a larger number of zinc fingers in their CTD

displayed higher DNA- and RNA-melting activity [191].

Although CSD proteins display a higher affinity for

ssRNA, their binding to RNA, in contrast to DNA, does

not require the presence of single-stranded regions [177].

Similar to the DNA binding, the major role in the non-

specific RNA binding belongs to the zinc fingers of the

CTD; the higher the number of zinc fingers, the higher

the affinity for RNA. In comparison with the affinity of

Lin28 or its domains for pre-let-7 (Lin28 > CSD > ZKD),

the non-specific EsCSDP1 binding to both RNA and

DNA shows a different order in the affinity: EsCSDP1 >

ZKD > CSD [177, 189]. In addition, EsCSDP binding to

RNA in vitro requires the presence of G in the binding site

sequence both in ssRNA and dsRNA.

As in the case of Lin28 [159, 165-168], the product

of A. thaliana AtCSDP1 immunoprecipitation [192] con-

tained several thousand different mRNAs, which indi-

cates a rather non-specific interaction of this protein with

RNA in vivo. Most of these mRNAs encoded proteins

involved in the energy-consuming cell processes, such as

ribosome biogenesis. The nucleotide composition of their

5′-UTRs was characterized by an increased content of

GC pairs, which potentially hinders translation of these

mRNAs under conditions unfavorable for the plant [193,

194]. It was found that these 5′-UTRs are prone to the

formation of secondary structures; hence, their efficient

translation requires interaction with the RNA-melting

protein. It is believed that AtCSDP1, by analogy with

prokaryotic CSPs, exhibits this activity towards certain

mRNAs and facilitates their interaction with the 43S pre-

initiation complex, and therefore, their translation [192].

Interestingly, AtCSDP1 was detected in the polysome

fraction, which indicates its participation in translation; a

temperature downshift promoted enrichment of

polysome fraction with this protein.

In addition to the nonspecific interaction of plant

CSD proteins with RNA, their specific interaction with

certain target RNAs cannot be ruled out. This is evi-

denced, e.g., by the recently reported ability of the CSD

protein PpCSP1 from the moss Physcomitrella patens to

regulate the reprogramming of differentiated leaf cells

into chloronema apical stem cells [195]. It should be

noted that Lin28, which closely resembles PpCSP1 in the

amino acid sequence and domain structure, is involved in

the reprogramming of human fibroblasts to pluripotent

stem cells [136].

A characteristic feature of CSD proteins is their

upregulated expression in actively dividing cells.

Prokaryotic CSPs are required for the cell growth under

unfavorable conditions and during active cell prolifera-
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tion. Eukaryotic CSD proteins are involved in the cell

growth regulation and cell differentiation and dedifferen-

tiation. In eukaryotes, these ontogenetic processes show

intricate time dependence and are controlled by numer-

ous cellular regulators.

The involvement of CSD proteins in the regulation

of gene expression at different levels is related to their

ability to bind DNA and RNA, with the specificity and

tightness of the binding dictated by the growing complex-

ity of the protein structure. Prokaryotic proteins com-

posed of CSD only regulate gene expression through their

RNA-melting activity. The presence of additional

domains in the CSD eukaryotic proteins provides their

more complex interactions with nucleic acids. In particu-

lar, under certain conditions, their DNA/RNA-melting

activity may be replaced by the annealing activity. This

dual activity allows CSD proteins to stimulate formation

of more perfect duplexes and facilitates transition of RNA

molecules to more energy-favorable conformations. The

functioning of CSD proteins is controlled by various

post-translational modifications resulting from the action

of stress factors or cellular effectors. Hence, these pro-

teins are frequently involved in various pathological

processes in the host organism, including tumor forma-

tion.

The search for specific nucleotide sequences and

identification of amino acid residues involved in the

interactions with these sequences are necessary to under-

stand the mechanisms of CSD protein functioning. Over

the past year, several YB-1 complexes with different

oligonucleotides have been generated to provide experi-

mental identification of amino acid residues involved in

the nucleic acid binding. Identification of functionally

important amino acid residues will promote the develop-

ment of new approaches to the treatment of cancer and

neurodegenerative diseases.
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