
Correct folding of long polypeptide chains synthe-

sized de novo or renaturation of protein denatured under

unfavorable conditions are very complex processes. The

protein homeostasis (proteostasis) in the cell is main-

tained by several families of heat shock proteins (Hsps)

that can interact with cell proteins and with each other in

order to perform their function. Human cells contain sev-

eral Hsp families: HspH (Hsp110), HspC (Hsp90), HspA

(Hsp70), HspD/E (Hsp60/Hsp10), DNAJ (Hsp40), and

HspB (according to the old classification, the number

after Hsp corresponds to the molecular weight of protein

monomer) [1, 2]. Each sHsp family is characterized by

specific properties, functions, and intracellular location.

Some Hsps (Hsp110, Hsp90, Hsp70, Hsp60) possess

ATPase activity, whereas other Hsps (DNAJ) regulate the

ATPase activity of their partner (Hsp70) or lack the

ATPase activity at all (small Hsps, sHsps). Efficient fold-

ing of polypeptides chains can be achieved only by coor-

dinated participation of all (or most) of Hsps belonging to

different protein families, each family including several or

even tens of Hsps. For instance, human genome contains

10 genes coding sHsps [3, 4]. sHsp monomers are com-

posed of 150-250 amino acid residues (a.a.) and have

comparatively small molecular masses [5, 6]. A charac-

teristic feature of sHsps is the presence of highly con-

served α-crystallin domain (ACD) consisting of 80-100 a.a.

organized into six or seven β-strands (Fig. 1a) [7, 8].

ACD participates in the formation of sHsp dimers that

can contain either identical or different monomers [9-

11]. Both isolated ACDs and intact sHsps can form amy-

loid fibrils under specific conditions in vitro [12, 13].

Interestingly, short ACD fragments that can prevent

aggregation of denatured proteins, i.e., possess the chap-

erone-like activity, tend to form amyloid fibrils [14]. In

addition to the conserved ACD, sHsps contain N-termi-
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nal (NTD) and C-terminal (CTD) domains that differ in

length and structure (Fig. 1a). sHsps containing con-

served (I/V)P(I/V) tripeptide in the CTD (αA-crystallin

(HspB4), αB-crystallin (HspB5), HspB1) are prone to

the formation of very large oligomers composed of more

than 20 monomers, which is due to the interaction of this

conserved tripeptide with the hydrophobic groove

formed by the β4-β8 strands of the neighboring ACD and

leads to the generation of large oligomers composed of

several dimers [15, 16]. sHsps differ in the length of

poorly ordered N-terminal domain (NTD) that might

play an important role in the stabilization of large

oligomers and their interaction with partners and target

proteins [11]. This NTD often contains one or several

phosphorylation sites [5, 6], whose phosphorylation can

affect sHsp oligomeric structure [17, 18] and interaction

with partner proteins, e.g., universal 14-3-3 adapter pro-

tein [19].

As already mentioned, the main function of sHsps is

the maintenance of protein homeostasis. Hsps can per-

form this function by different mechanisms. Firstly, sHsps

bind partially denatured and misfolded proteins and pre-

vent their aggregation [5, 6]. Formation of such complex-

es not only prevents aggregation of denatured proteins but

keeps them in a state maximally suitable for the interac-

tion with ATP-dependent Hsps that can renature these

proteins [20]. Secondly, sHsps promote elimination of

denatured proteins via degradation in proteasomes [6, 21]

or autophagosomes [22, 23]. Finally, in cooperation with

Hsp110, Hsp70, and Hsp40, sHsps can participate in dis-

assembling of amyloid aggregates [24]. Therefore, sHsps

play an important role in cell protection against accumu-

lation of partially denatured or misfolded proteins.

Despite the multilevel protection of cells against pro-

teostasis dysregulation, impairments in the protein fold-

ing control can cause certain neurodegenerative diseases.

Fig. 1. a) Structures of human HspB1 and HspB8. Green, N-terminal domain (NTD); blue, α-crystallin domain (ACD); orange, C-terminal

domain (CTD) with conserved IPV tripeptide. Arrows indicate positions of point mutations associated with Charcot–Marie–Tooth (CMT)

disease. b) Ribbon model of the HspB1 dimer fragment containing ACD and CTD (constructed based on PDB 4MJH using PyMol program).

Position of β6/β7 strands forming the intermonomer interface is indicated. Left panel, top view; right panel, side view; dimers are rotated by

90° relative to each other. 

a

b
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Such impairments can result from mutations in Hsps or

accumulation of extremely large amounts of misfolded

proteins, the renaturation or elimination of which would

be beyond of the capability of the proteostasis-controlling

system. 

In the first part of our review, we discuss the effects of

mutations in sHsps on congenital neuropathies, such as

Charcot–Marie–Tooth disease (CMT) and distal hered-

itary motor neuropathy (dHMN). In the second part of

the review, we summarize the data on the role of sHsps in

preventing the accumulation of amyloids of different

nature in the cells.

MUTATIONS IN sHsps AND TYPE II

CHARCOT–MARIE–TOOTH DISEASE 

Inherited neuropathies are commonly occurring and

heterogeneous disorders. A neuropathy is classified as

CMT if both sensor and motor neurons are damaged or as

dHMN if only motor neurons are damaged [25]. Hence,

dHMN can be considered as a particular case of CMT.

Symptoms and molecular basis of CMT can be very dif-

ferent, thus complicating diagnosis of different forms of

this disease [26]. In the simplest case, CMT is classified

into two types. Type I CMT is characterized by the myelin

sheath damage accompanied by reduced nerve conduc-

tion velocity. In type II CMT, the nerve conduction veloc-

ity is not changed, but the axon itself is damaged. Type II

CMT is observed in 40% CMT patients; about 10% of

these patients carry mutations in genes encoding three

sHsps – HspB1, HspB3, and HspB8 [27]. At present,

more than 30 mutations have been detected in the HspB1

gene, one mutation in the HspB3 gene, and nine muta-

tions in the HspB8 gene [28, 29]. To understand molecu-

lar mechanisms underlying the CMT pathology, it is

essential to analyze changes induced in the protein struc-

ture by these mutations.

In HspB1, mutations associated with CMT has been

localized to all three domains of this protein (Fig. 1a).

Three point mutations, G34R, P39L, and E41K, in the

NTD, lead to the increase in the size of protein oligomers

and decrease in the protein thermal stability [18]. Both

wild-type HspB1 and mutant proteins are phosphorylat-

ed by MAPKAP kinase 2. However, in the case of the

wild-type protein, phosphorylation results in rapid (and

often complete) dissociation of large oligomers, whereas

phosphorylation of the mutants leads only to slight

changes in the HspB1 quaternary structure [18]. It was

found that phosphorylation-induced dissociation of large

oligomers plays an important role in the chaperone-like

activity of HspB1 [30]. Therefore, mutations in the NTD

disturb phosphorylation-dependent regulation of chaper-

one-like activity of HspB1.

Most CMT-associated mutations are located in the

ACD (Fig. 1a). This domain and especially its β6/β7

strands are involved in the formation of subunit–subunit

contacts in large oligomers of sHsps (Fig. 1b) [31].

Therefore, mutations in the ACD could result in signifi-

cant changes in the HspB1 quaternary structure. Indeed,

mutations L99M, R127W, S135F, and R140G cause

destabilization of the protein quaternary structure leading

to partial dissociation of large HspB1 oligomers at low

protein concentration [32-34]. At the same time, at high

protein concentration, these mutants tend to form

oligomers much larger than the corresponding oligomers

formed by the wild-type HspB1, which can be explained

by incorrect folding of the protein monomers and expo-

sure of “sticky” regions leading to increased HspB1

aggregation. It should be mentioned that due to the over-

all destabilization, the L99M, R127W, and S135F

mutants easily dissociate even at low phosphorylation lev-

els, i.e., under condition when the wild-type protein

remains in the form of large oligomers [32, 34]. In con-

trast, mutation R136W results in the formation of

extremely stable oligomers with the size much larger than

that of oligomers formed by the wild-type HspB1. This

can be explained by changes in the monomer folding and

formation of hydrophobic contacts between F138 residue

of one monomer and mutated W136 residue of the neigh-

boring monomer. All analyzed mutants of HspB1 differ

from the wild-type protein in their ability to interact with

HspB6 and usually demonstrate lower chaperone-like

activity toward most model substrates (except insulin)

[32-34]. Therefore, mutations in the ACD result in sig-

nificant changes in the HspB1 quaternary structure, dis-

turb phosphorylation-dependent regulation of protein

quaternary structure, and affect HspB1 interaction with

protein partners and substrates.

Mutation in the CTD can also be associated with

CMT [29]. Mutations T180I, P182S, and R188W are

located in close vicinity to the conserved IPV tripeptide

(residues 181-183). As already mentioned, this peptide is

a fragment of highly flexible CTD that interacts with the

ACD domain of the neighboring monomer and stabilize

the structure of large HspB1 oligomers [15]. Indeed,

mutation P182S decreases protein thermal stability and

leads to the formation of very large polydisperse HspB1

aggregates [35]. Mutation R188W is also accompanied by

an increase in the HspB1 oligomer size, although it has no

significant effect on the protein thermal stability.

Mutations P182S and R188W considerably decrease the

chaperone-like activity of HspB1 in vitro [35]. These

effects can be explained by the fact that the CTD plays an

important role in the interaction of sHsps with protein

substrates [36].

Summing up, each mutation in HspB1 leads to dif-

ferent alterations in its properties (Fig. 2). Nevertheless,

there are some common changes in the structure and

properties of HspB1 mutants associated with the CMT

disease. Firstly, these mutations affect oligomeric state or

stability of HspB1 oligomers. Secondly, they disturb
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phosphorylation-dependent regulation of protein

oligomerization. Thirdly, these mutations affect HspB1

interactions with protein partners and substrates and, as a

rule, are accompanied by a decrease in its chaperone-like

activity. It is possible that the key factor in the effect of

these mutations is the disturbance of proper assembly of

HspB1 oligomeric complexes, since reversible association

and dissociation of subunits is a prerequisite of normal

HspB1 functioning [37].

It is important to answer the question which cellular

processes are negatively affected by HspB1 mutations. As

already mentioned, mutations in HspB1 are associated

with the axonal form of CMT that affects neuronal axons

[27]. Therefore, it was suggested that in the case of HspB1

mutants, CMT is caused mainly by the axonal damage

[38, 39]. HspB1 might directly or indirectly affect the sta-

bility of the cytoskeleton formed by microtubules and

intermediate filaments (neurofilaments), which are the

major components of neuronal cytoskeleton. Indeed, it

was shown that HspB1 interacts with tubulin, thus

increasing the stability of microtubules [40]. It is believed

that mutations in the ACD promote HspB1 affinity to

tubulin and stabilize microtubules [41, 42]. Under nor-

mal conditions, microtubules are dynamic structures that

constantly undergo reversible polymerization/depoly-

merization [43]. To compensate for the stabilization of

microtubules caused by HspB1 mutations, cells upregu-

late the activity of histone deacetylase 6 (HDAC6), an

enzyme that deacetylates tubulin, thereby inducing

microtubule depolymerization and causing damage of the

axonal cytoskeleton [43]. In this respect, it should be

mentioned that recently developed highly specific

inhibitors of histone deacetylase are considered as prom-

ising drugs for the treatment of type II CMT [44].

The second important component of cytoskeleton

that can be affected by HspB1 is intermediate filaments

(neurofilaments). HspB1 mutations S135F and P182L

are associated with the neurofilament network damage

Low protein concentration

temperature temperature

kinasekinase

substrate substrate

kinase

Usually reduced 

chaperone-like

activity

Usually reduced 

chaperone-like

activity

Variable 

chaperone-like

activity

mol P/mol protein > 1 mol P/mol protein > 0.5

mol P/mol protein < 0.5

NTD mutants ACD mutants CTD mutants WT/HspB1

Fig. 2. Changes induced in the structure and properties of CMT-associated HspB1 mutants. Wild-type HspB1 (right column) forms oligomers

stable to dissociation, possesses high chaperone-like activity, and is resistant to heat-induced aggregation. Large HspB1 oligomers dissociate

to smaller oligomers when phosphorylated at a ratio more than 0.5 mol phosphate per mol protein. Mutants with amino acid substitutions in

the NTD (left column) form oligomers stable to dissociation and exhibit lower thermal stability and, as a rule, decreased chaperone-like activ-

ity. Oligomers of these mutants do not dissociate after phosphorylation at a ratio of 1 mol phosphate per mol protein and higher. Mutants with

amino acid substitutions in the ACD (second from the left column) form large oligomers prone to dissociation at low protein concentration,

usually possess decreased chaperone-like activity, and dissociate to smaller oligomers after phosphorylation at a ratio less than 0.5 mol phos-

phate per mol protein (except R136W mutant). Mutants with amino acid substitutions in the CTD (second from the right column) form large

oligomers prone to dissociation at low protein concentration and usually have lower chaperone-like activity.

substrate
substrate
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and can lead to cell death [45, 46]. Mutations R127W,

S135F, and P182L are accompanied by an increase in the

extent of neurofilament phosphorylation by cdk5 protein

kinase and also result in the cytoskeletal damage [47].

Experiments on transgenic mice expressing human

HspB1 mutants S135F and R136W correlate with the

data obtained on cell cultures. The animals demonstrat-

ed symptoms characteristic for CMT, such as locomo-

tion impairments, axonal damage, increased level of

neurofilament phosphorylation, and decreased level of

tubulin acetylation [48, 49], although less pronounced

than in CMT patients. There are no doubts that compre-

hensive understanding of molecular mechanisms under-

lying the association of HspB1 mutations with the CMT

development requires further clinical and experimental

studies.

Mutations in another Hsp, HspB8 (Hsp22), can also

be associated with the CMT [29]. As in HspB1, these

mutations can be located in NTD, ACD, or CTD of

HspB8. However, the mutation hotspot is Lys141 residue

that can be replaced by Asn, Met, Glu, or Thr. This

residue is homologous to Arg140 in HspB1, Arg116 in

HspB4, and Arg120 in HspB5. It is located at the inter-

face of two monomers and participates in the stabilization

of the contact between the monomers by forming a salt

bridge with negatively charged residue of the neighboring

monomer [31]. Unlike HspB1, HspB8 forms only small

oligomers that presumably exist as an equilibrium mixture

of dimers with monomers [50, 51]. Probably due to this

fact, mutation K141E does not affect the quaternary

structure of HspB8. However, it destabilizes the structure

of HspB8 and makes it more susceptible to limited prote-

olysis [52]. Depending on the nature of protein substrate,

the K141E mutant possesses either equal or slightly lower

chaperone-like activity than the wild-type HspB8 [52].

Some experiments indicated that K141 substitution

decreases HspB8 affinity to the adapter protein Bag3 [53,

54], whereas other studies demonstrated that this muta-

tion, on the contrary, increases HspB8 affinity to Bag3

[28]. Bag3 forms heterooligomeric complex with HspB8,

heat shock protein Hsc70, and chaperone-interacting

ubiquitin ligase (CHIP) that catalyzes ubiquitination of

denatured proteins followed by proteolytic degradation in

autophagosomes [23, 29]. Mutation-induced changes in

the interaction between HspB8 and Bag3 can disturb the

process of proteolytic degradation of denatured proteins

and lead to various neurodegenerative diseases. Recently

published data indicate that certain HspB1 mutations can

also affect normal processes of autophagy and

phagophore formation [55].

To conclude this part of the review, mutations in

sHsps are associated with the axonal form of CMT.

Mutations in HspB1 shift the equilibrium between differ-

ent oligomeric forms, thereby affecting HspB1 interac-

tion with target proteins, in particular, cytoskeletal com-

ponents (Fig. 3). Cytoskeleton damage can result in neu-

ronal death. Mutations in HspB8 alter its interaction with

Bag3, leading to the impairments in the chaperone-

assisted ubiquitination and autophagy. This results in the

accumulation of denatured proteins followed by cell

death (Fig. 3). In other words, mutations in sHsps disturb

proteostasis. 

Fig. 3. Probable mechanisms underlying effects of CMT-associated mutations. Mutations in HspB1 are often associated with changes in the

stability of protein oligomers or in the regulation of HspB1 oligomeric state, which disturbs HspB1 interaction with protein targets and part-

ners resulting in cytoskeletal damage and other impairments. Mutations in HspB8 affect its interaction with the adapter protein Bag3, affect-

ing autophagy and leading to the accumulation of denatured protein aggregates.
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Let us address another problem, namely, how sHsps

prevent accumulation of protein aggregates and amyloid

fibrils formed by denatured proteins and proteins prone to

amyloidosis.

sHsps AND AMYLOIDOSIS 

Many proteins contain in their structure long

stretches of amino acid sequence that can form β-strands.

In addition, certain point mutations can increase the

probability of β-strand formation from α-helices or ran-

dom coils. When such regions are brought in close vicin-

ity to each other and are present at high concentrations,

they can interact with the formation of prefibrils due to

lateral aggregation. The prefibrils can then transform into

fibrils and inclusion bodies. Among proteins prone to

amyloid formation are α-synuclein, amyloid peptide

Aβ1-40, prions, tau protein, and many others.

The effect of sHsps on synuclein aggregation has

been comprehensively studied. Synuclein, a comparative-

ly small protein of 140 a.a., belongs to intrinsically disor-

dered proteins. During interaction with the membrane or

formation of tetramers, most of the synuclein sequence

forms ordered α-helical regions. In addition, synuclein

can exist as unordered monomers or misfolded

monomers prone to aggregation [56]. The probability of

misfolding is increased by the action of stress factors and

mutations A53T, A30P, and E46K [57]. Destabilized mis-

folded monomers form β-amyloid prefibrils that are then

transformed into fibrils or Lewy bodies detected in neu-

rons of Parkinson’s disease patients [57]. 

Formation of synuclein aggregates (Lewy bodies) is

often accompanied by upregulation of HspB1 and HspB5

expression [58]. Detailed studies on the impact of sHsps

on synuclein aggregation have led to the conclusion that

HspB1 and HspB5 do not form tight complexes with

synuclein monomers; however, they can stabilize the

structure of the monomer and prevent its transition to the

form prone to oligomerization and aggregation. These

effects were observed for both intact sHsps and their iso-

lated ACDs [59]. HspB1 and HspB5 also interact with

small synuclein aggregates and even with amyloid fibrils,

preventing their dissociation and induction of secondary

nucleation [60]. It was shown that HspB1 can be located

on the surface of synuclein fibrils, thereby decreasing

their hydrophobicity and preventing their aggregation and

elongation [61].

Interestingly, isolated ACD efficiently stabilizes the

structure of monomeric synuclein but is unable to inter-

act with synuclein fibrils and cannot prevent their aggre-

gation and elongation [61]. It was suggested that the sites

responsible for the prevention of amorphous aggregation

of model protein substrates and for the inhibition of

amyloid formation are located in different parts of the

sHsp molecule. The sites responsible for the prevention

of amorphous aggregation are located in the NTD,

whereas the sites responsible for the prevention of amy-

loid peptide Aβ1-40 aggregation are located in the cen-

tral ACD [62]. This is possible because of the interaction

of ACD containing six or seven β-strands with β-strands

of the protein target. In this respect, it should be men-

tioned that under in vitro conditions, crystallin itself

can form functionally active β-amyloids with the

chaperone-like activity comparable to that of intact pro-

tein [12, 13]. Moreover, recently published data indicate

that β-amyloid can be accumulated in cataract eye lens

[63]. 

According to the prevailing concept, sHsps, includ-

ing HspB1 and HspB5, prevent aggregation of synuclein

by stabilizing its monomers and/or suppressing fibril for-

mation. Unexpectedly, it was found that overexpression of

HspB5 in human glioblastoma cells promotes accumula-

tion of synuclein aggregates in astrocytes [64], which may

be due to the competition between overexpressed HspB5

and HspB8 for the interaction with Bag3 and inhibition of

autophagy.

Apart from synuclein, sHsps (HspB1, HspB5,

HspB6, HspB8) can interact with Aβ-amyloid peptides.

Different sHsps were found to accumulate in senile

plaques formed mostly by amyloid peptides in the cells of

Alzheimer’s disease patients [65, 66]. sHsps (HspB1,

HspB5, HspB6, HspB8) detected in these aggregates can

be covalently linked to the amyloid peptide by transgluta-

minase [65]. sHsps not only co-localize with amyloid

peptide aggregates but can also prevent their formation

[67-69]. It is suggested that depending on the nature of

amyloid peptide (Aβ1-42 or D-Aβ1-40), sHsps can affect

interaction of its monomers (or small peptide oligomers)

with the outer cell membrane, while HspB5 can prevents

transition of protofibrils into mature fibrils [69]. Addition

of amyloid peptide to the culture of cortical rat astrocytes

was accompanied by the HspB1 release and binding of the

added peptide [68]. HspB6 was found to protect neuro-

blastoma SH-SY5Y cells from the accumulation of Aβ-

amyloid peptide aggregates [70]. HspB6 interacts with the

peptide site responsible for its polymerization and aggre-

gation. Phosphorylation of HspB6 promotes its interac-

tion with the low-molecular-weight forms of amyloid

peptide and increases its efficiency in preventing amyloi-

dosis. Even small N-terminal peptide of HspB6 (25 a.a.)

phosphorylated at Ser residue prevents aggregation of

amyloid peptide fibrils [70].

Tau is another aggregation-prone protein that forms

neurofibrillary tangles in the cells of Alzheimer’s disease

patients. Tau is a multifunctional intrinsically disordered

protein that stabilizes microtubules [71] and can be phos-

phorylated by many protein kinases. Tau hyperphospho-

rylation decreases its interaction with tubulin and

increases the probability of tau aggregation with the for-

mation of inclusion bodies, which results in the develop-

ment of various tauopathies [72, 73].
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HspB1 predominantly interacts with hyperphospho-

rylated tau protein, thereby decreasing the amount of

protein available for aggregation. Moreover, HspB1

increases the rate of dephosphorylation of paired helical

filaments formed by the hyperphosphorylated tau [74]. It

is believed that HspB1 recognizes the phosphorylation

sites in tau structure, thus preventing its aggregation and

promoting proteolytic degradation of this protein [75].

Experimental data indicate that hyperphosphorylation

leads to further tau destabilization. This highly destabi-

lized protein tends to aggregate, while HspB1 inhibits this

process. In parallel, destabilized tau protein can undergo

renaturation or proteolytic degradation, while HspB1

promotes both these processes [76]. The peptide corre-

sponding to a.a. 244-369 of tau protein tends to form fib-

rils; HspB1 transiently interacts with this peptide and

decreases the rate of fibril formation [77]. It was suggest-

ed that the VQI sequence twice repeated in the 244-369 a.a.

peptide interacts with the hydrophobic groove formed by

the ACD β4-β8 strands in HspB1, i.e., the sites occupied

by the CTD (I/V)X(I/V) peptide in the absence of sub-

strates [77, 78]. 

sHsps can affect tau aggregation both directly and

indirectly. For instance, it was found that the adapter pro-

tein 14-3-3 transiently and weakly interacts with the non-

phosphorylated tau; phosphorylation of the latter strong-

ly increases the binding affinity of 14-3-3 protein [79-82].

Depending on the conditions and location of phosphory-

lation sites, 14-3-3 can either promote further tau phos-

phorylation and aggregation and/or stabilize tau aggre-

gates, i.e., prevent their disassembly and emergence of

especially deleterious small oligomers serving as new

oligomerization seeds [83]. Phosphorylated HspB6 forms

tight complexes with 14-3-3 [84] and, therefore, can effi-

ciently compete with tau for the interaction with 14-3-3.

Hence, phosphorylated HspB6 can indirectly modulate

the effect of 14-3-3 on tau aggregation.

Experimental data on the impact of sHsps on prion

aggregation are controversial. Introduction of the scrapie-

inducing prion (scrapie 263 agent) into the hamster brain

upregulated HspB5 synthesis; however, the authors failed

to demonstrate HspB5 co-localization with PrPSc aggre-

gates. The brain levels of HspB5 are significantly

increased in various prion diseases, although it is unlikely

that this increase affects pathogenesis of prion infections

[85]. At the same time, yeast Hsp26 and Hsp42 were

found to prevent prionogenesis of the yeast prion Sup35.

Hsp42 suppressed the growth of fibrils from the ends,

whereas Hsp26 inhibited self-association of prion fibrils.

Moreover, by cooperating with Hsp40, Hsp70, and

Hsp104, sHsps can destabilize prion fibrils and promote

their disassembly [86].

In conclusion, sHsps predominantly interact with

monomers (or small oligomers) of intrinsically disordered

proteins prone to amyloid formation. By binding to these

proteins, sHsps stabilize their structure, prevent their

aggregation, and/or facilitate their proteolytic degrada-

tion (Fig. 4). It is highly probable that this type of interac-

tion occurs with the participation of amyloidogenic β4-β8

strands of the ACDs of sHsps [62]. The binding of sHsps

results in the formation of mixed structures, in which β-

strands of sHsps interact with β-strands of amyloidogenic

protein monomers. The similarity between the structures

formed by amyloidogenic proteins and sHsps is supported

Fig. 4. Small oligomers formed upon sHsp phosphorylation at different sites can prevent amorphous aggregation of partially denatured pro-

teins and accumulation of amyloid fibrils by binding monomers (or small oligomers) of amyloidogenic proteins.

amyloids

HspB prevents amyloid 

formation

HspB phospho-HspB

Protein monomers prone 

to amyloid formation
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by the fact that both sHsps (HspB5) and amyloids of tau

protein interact with α7 nicotine acetylcholine receptors,

inducing signal transmission through Stat3, activation of

autophagy, and suppression of secretion of proinflamma-

tory interleukins [87, 88]. It was hypothesized that in large

sHsps oligomers, the β4-β8 strands responsible for the

interaction with amyloidogenic proteins are occupied

with the CTD tripeptide (I/V)P(I/V). Because of this,

large sHsp oligomers interact poorly with amyloidogenic

proteins. Stress factors and associated phosphorylation

cause large sHsp oligomers to dissociate to small

oligomers. This results in the exposure of hydrophobic β4-

β8 strands that become available for the interaction with

amyloidogenic proteins. After this, sHsps can efficiently

prevent aggregation of protein substrates [89].

sHsps are important components of a complex chap-

erone system that ensure correct protein folding and pre-

vent accumulation of partially denatured proteins in the

cell. Certain sHsps (such as HspB1, HspB4, HspB5) exist

in a form of labile large oligomers that are in the equilib-

rium with small oligomers. Mutations can affect the equi-

librium between different oligomeric forms, thermal sta-

bility, chaperone-like activity, and interactions of sHsps

with protein partners. Mutations in HspB8 can influence

its interaction with the adapter protein Bag3 and

autophagy regulation, ensuring selective proteolysis of

misfolded proteins. Therefore, mutations in sHsps can

lead to neurodegenerative disorders, such as CMT. Under

certain conditions, ACD β-strands can interact with β-

strands of amyloidogenic proteins and stabilize the struc-

ture of the latter, prevent their aggregation, and/or pro-

mote their proteolytic degradation. Hence, sHsps can

prevent or delay the development of neurodegenerative

disorders, such as Parkinson’s and Alzheimer’s diseases,

different forms of tauopathies, and prion diseases.
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